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Abstract—Many approaches have been considered for 

automatic grading of brain tumours by means of pattern 

recognition with magnetic resonance spectroscopy (MRS). 

Providing an improved technique which can assist clinicians in 

accurately identifying brain tumour grades is our main 

objective. The proposed technique, which is based on the 

discrete wavelet transform (DWT) of whole-spectral or sub-

spectral information of key metabolites, combined with 

unsupervised learning, inspects the separability of the extracted 

wavelet features from the MRS signal to aid the clustering. In 

total, we included 134 short echo time single voxel MRS spectra 

(SV MRS) in our study that cover normal controls, low grade 

and high grade tumours. The combination of DWT-based 

whole-spectral or sub-spectral analysis and unsupervised 

clustering achieved an overall clustering accuracy of 94.8% and 

a balanced error rate of 7.8%. To the best of our knowledge, it 

is the first study using DWT combined with unsupervised 

learning to cluster brain SV MRS. Instead of dimensionality 

reduction on SV MRS or feature selection using model fitting, 

our study provides an alternative method of extracting features 

to obtain promising clustering results. 

 

Index Terms—Brain tumour, glioma grade, clustering, 

dimension reduction, discrete wavelet transform, magnetic 

resonance spectroscopy, unsupervised learning.      

I. INTRODUCTION 

    Magnetic resonance imaging (MRI) is a widely-used 

modality that facilitates the diagnosis and prognosis of brain 

tumours. Standard MRI sequences are routinely used to 

differentiate among various brain tumour types based on 

qualitative visual analyses of the represented soft tissue 

contrast. Indeed, more than 120 classes of brain tumours are 

known [1], which are categorised into four grades depending 

on the level of malignancy by the world health organisation 

(WHO) [2]. The grading from low to high (I-IV) represents 

malignancy levels from biologically least aggressive to most 

aggressive brain tumours as shown by histological criteria, 

e.g., invasiveness, vascularity, and tumour growth rate [1]. 

Gliomas are the most common primary brain tumour and 

 
    This work was supported by CRUK C1459/A13303 and a City 
University London Pump Priming Grant. Data was originally acquired as 

part of the EU FP7 eTUMOUR project LSHC-CT-2004-503094. Asterisk 

indicates corresponding author. 
    G. Yang is with Neuroscience Research Centre, Cardiovascular and Cell 

Sciences Institute, St. George’s, University of London, Cranmer Terrace, 

London, U.K., SW17 0RE. (email: gyang@sgul.ac.uk). 
    T.R. Barrick and F.A. Howe are with Neuroscience Research Centre, 

Cardiovascular and Cell Sciences Institute, St George's, University of 

London, Cranmer Terrace, London, U.K., SW17 0RE. 
    T. Nawaz and G. Slabaugh are with Department of Computer Science, 

School of Mathematics, Computer Science, and Engineering, City 

University London, Northampton Square, London, U.K., EC1V 0HB. 
 

pre-treatment assessment of grade is required; however, the 

sole use of standard MRI sequences may be insufficient for 

an accurate diagnosis [3]. The current gold standard for 

diagnosis of a suspicious abnormal mass is the 

histopathological analysis of a biopsy sample [4]. However, 

due to tumour heterogeneity a tumour may be under-graded 

if the area of greatest malignancy is not selected for biopsy. 

    Alternatively, in-vivo 
1
H magnetic resonance 

spectroscopy (MRS) can be used to non-invasively inspect 

the biochemical information of the metabolites present in the 

living tissue, and can improve characterisation of human 

brain tumours compared to using standard MRI alone. There 

are up to 12 different metabolites in the brain that can be 

measured using 
1
H MRS at clinical field strengths of 1.5T or 

3T [5]. In particular, single voxel (SV) MRS extracts 

metabolic information of a specific region of interest (ROI), 

and it is a unique non-invasive tool to aid classification of 

human brain tumours with appropriate spectral analysis such 

as with pattern recognition [6].  

    Analysis of 
1
H MRS data for data clustering and tissue 

classification generally requires some form of data 

reduction, either to reduce the noise or extract the most 

salient features. Mainardi et al. [7] designed a quantification 

model for in-vivo MRS parameters using the discrete 

wavelet packet decomposition (WPD). Mahmoodabadi et al. 

proposed a modified frequency ordered WPD method 

combined with fuzzy classification framework to analyse 

pediatric metabolic brain diseases using wavelet transform 

based features extracted from both MRS and diffusion-

weighted imaging [8]. Tiwari et al. investigated combining 

wavelet (Gabor and Haar filters) features extracted from 

both T2-weighted MRI and MRS modalities, applied to 

supervised prostate cancer detection [9]. The discrete 

wavelet transform (DWT) has the advantage of providing 

multi-resolution discriminatory information [10] from 

different acquisition modalities, including but not limited to 

digital signals and images [9]. However, there is very limited 

research in the literature on fully-automating an 

unsupervised brain tumour data clustering using DWT based 

analysis that does not require labelled data or incur possible 

overfitting during the training procedure.        

    Here we hypothesise that unsupervised learning based 

clustering on extracted DWT features can improve brain 

tumour grading compared to dimension reduction 

techniques, which are based on second and higher-order 

statistics (e.g., PCA and ICA) or manifold learning based 

nonlinear methods (e.g., Laplacian Eigenmaps (LE)). We 

extract DWT features of the whole-spectra and sub-spectra 

(as shown in Figure 1), and hypothesise that local 

information from only a few key metabolites of the sub-

spectra is sufficient to distinguish between tumour grades, 
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because those metabolites exhibit discriminative 

characteristics for specific tumour grades [6]. 

To accomplish this, we build a feature vector by using the 

DWT coefficients of the whole-spectra or by encoding the 

non-parametric statistics of the computed DWT coefficients 

of the sub-spectra corresponding to different metabolites. 

Then in an agglomerative hierarchical clustering framework 

the MR spectra belonging to different tumour grades are 

separated. We show the effectiveness of the proposed 

method on SV MRS data (134 spectra), acquired from 

normal brain tissue and from low and high grade gliomas. 

The proposed methods show encouraging performance by 

achieving an unsupervised clustering accuracy of 94.8% for 

both whole-spectral and sub-spectral analysis that 

outperforms our previous analyses of this data. Instead of 

extracting eigen-decomposed features using dimensionality 

reduction techniques, this study explores DWT features 

using whole-spectral and sub-spectral analysis, and obtains 

promising clustering results for separating different brain 

tissue types. Section II details the materials and main 

methods of this study. Section III demonstrates our 

experimental results followed by elaborated discussions 

(Section IV) and a conclusion (Section V). 
 

 
Figure 1: Decomposition of a whole MR spectrum into a set of sub-spectra 

(sub-regions coloured in cyan) corresponding to different metabolites. 

Representative Grade II (GII) tumour, Grade IV (GIV) tumour and Normal 
spectra are shown in blue, red and green colours. The selected features 

using mRMR are shown with magenta circles. 

II. MATERIALS AND METHODS 

A. Data Acquisition and Patient Subjects 

    MR data were obtained at St. George’s University of 

London using a 1.5-Tesla scanner (GE Healthcare, 

Milwaukee, WI, USA), which was equipped with 22      

gradients and a quadrature head coil. Written informed 

consent was obtained from all participants in accordance 

with local ethics procedures. Either biopsy or resected 

tumour tissue samples obtained as part of the patients’ 

clinical diagnosis or treatment were used to provide a 

histological diagnosis of the tumour type and grade as the 

overall gold standard (ground truth). 

     In total       SV MRS were obtained including 24 

Grade II (GII) tumours (2 oligodendroglioma, 3 

oligoastrocytoma, 3 fibrillary astrocytoma, 4 gemistocytic 

astrocytoma and 12 diffuse astrocytoma) and 31 Grade IV 

(GIV, glioblastoma multiforme). A further 79 MR spectra 

were obtained from three normal controls using multiple 

voxel MRS with the same acquisition parameters (i.e., which 

had compatible TR/TE) as the SV MRS (Table 1). 
 

TABLE 1 

NUMBER OF PATIENTS STUDIED AND NUMBER OF SPECTROSCOPIC 

VOXELS ANALYSED FOR EACH TISSUE CLASS. 

  
Tissue Class   

Normal Grade II Grade IV Total 

Number of Subjects Studied 3 24 31 58 

Number of MRS Voxels Analysed 79 24 31 134 

 

    All SV MRS data were acquired at short Echo Time (TE) 

using the GE developed point-resolved spectroscopic 

sequence (PRESS) protocol (Repetition Time (TR) = 

2000ms, Echo time (TE) = 30ms, 2048 data points with 

2500Hz bandwidth). 

     An expert panel (including spectroscopists, pathologists 

and radiologists) validated the brain tissue types included in 

this study as part of the eTUMOUR project, with a 

histopathological diagnosis of the central nervous system 

(CNS) tumours according to WHO criteria [2]. Individual 

voxels were placed to encompass predominantly viable 

tumour tissue as much as possible and avoid areas of pure 

necrosis. Apodisation in the time domain was performed 

using a half Hann window followed by a fast Fourier 

transform and automatic phasing according to [11]. Each 

spectrum was referenced to both N-acetyl Aspartate (NAA 

at 2ppm and a search region                ) and 

Choline (Cho at 3.21ppm and a search region         

       ) for chemical shift alignment, and then truncated to 

the chemical shift range of 4.0 to 0.2ppm. In addition, the 

phased real part of the spectra were used for further analysis 

[12]–[14]. Each whole spectrum consisted of       data 

points representing the majority of metabolic information. 

B. Feature Extraction 

All SV MRS data were stored as a 2D matrix,       , 

where                contains each spectrum as a 

column vector      . The column vectors were    

normalised, 
 

  
  

  

√∑    
  

 

      {       }                                                                            

 

to form the matrix    {  
 }   

  with        , which is a 

set of normalised MR spectra.   is the number of the spectra 

and   is the number of the data points of each spectrum. 

    We used the DWT to encode the MR spectral information. 

For both the whole-spectral and sub-spectral analysis, we 

compared widely-used wavelet basis functions including 

Daubechies (Db1, Db2, Db3), Coiflets (Coif1, Coif2, Coif3) 

and Symlets (Sym1, Sym2, Sym3).  

    For the whole-spectral analysis, we tested multiple levels 

(i.e., 1 to 12 levels) of decomposition. At each level of 
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resolution or octave, the spectral signal   
  is convolved ( ) 

simultaneously with a high-pass filter (  ) and a low-pass 

filter (  ) to obtain the corresponding coefficients (   and 

  ) as       
        and        

        with the 

subsampling or decimation ( ) by a factor of 2 after each 

pass through the paired filters [15]. The feature vectors are 

computed for all   
  to obtain the feature matrix, of size 

      , in which    is the size of the approximation and 

detail coefficients at different levels           (Table 2). 

    For the sub-spectral analysis by given   
  we built the 

feature vector,   , as follows. We extracted information for 

the key metabolites by taking the sub-spectra windowed 

symmetrically around their respective ppms (Figure 1).  We 

performed a mutual information based feature selection (i.e., 

mRMR, minimum redundancy and maximum relevance 

method [16]) to identify the key metabolites, which are the 

most powerful discriminants in terms of separating the three 

tissue types (Normal, GII and GIV). The only parameter 

specified in the mRMR method is the number of features, 

which was set to 10 in order to obtain a moderate sample per 

feature ratio to avoid overfitting [17]. The mRMR method 

resulted in 10 selected features (Figure 1) at 3.62, 3.24, 2.99, 

2.49, 2.05, 2.03, 2.01, 1.99, 1.19, and 0.85 ppm. For sub-

spectral analysis we chose dominant high signal to noise 

ratio biochemicals [18] whose peak areas are mostly 

strongly associated with these regions: NAA (main singlet at 

2.05 ppm), Cho (3.21 ppm), Creatine (Cr) (3.02 ppm) and 

lipids and macromolecules (main peaks at 1.3 and 0.9 ppm). 

The excluded points of 3.62 ppm and 2.49 ppm include 

strongly overlapping multiplet peaks from Myo-inositol with 

glutamate and glutamine (Glx) and those from Glx with 

NAA respectively. Note in high-grade tumours there may 

also be a contribution from lactate (doublet centred at 1.33 

ppm). Boxplots of the five selected features among three 

different tissue types are shown in Figure 2, and statistical 

significances were given by two-sample Wilcoxon rank-sum 

test between each two tissue types (significance level of 

p<0.01 subject to the Bonferroni correction [19]). In general, 

NAA and Cr are decreased and Cho increased in tumours 

compared to normal brain [20]. Additionally, the Lipid and 

lactate signal observable at short TE increase with tumour 

grade [20]. The sub-spectra for NAA, Cho, Cr, Lipid (0.9 

ppm) and Lipid and Lactate (1.3 ppm) were denoted as 

  
    ,   

    ,   
   ,   

     
, and   

     
, respectively. The 

window sizes for each   
  were fixed and denoted as     , 

    ,    ,      , and      , respectively. We applied the 

DWT using the single-level implementation of Mallat's 

approach [10] on each of the   
    ,   

    ,   
   ,   

     
, and 

  
     

 signals to obtain the corresponding set of 

(approximation and detail) coefficients   
   ,   

   ,   
  , 

  
    

,   
    

, respectively. The higher levels of 

decomposition were not needed given the smaller sub-

spectra window sizes compared to the whole-spectral 

analysis, and single-level decomposition was expected to be 

sufficient to effectively capture the frequency information. 
 

 

Figure 2: Boxplot of the five selected features among three tissue types 

(Normal: green; GII: blue; GIV: red). Red circled dots are the outliers of 
each group (*** indicates p<0.0001 and ** indicates p<0.001).    

    The choice of the window sizes ( ) for different 

metabolites can influence the performance of the system. In 

addition, the window size must be kept small to avoid 

TABLE 2 

PARAMETER SETTINGS OF THE DWT METHOD USING WHOLE-SPECTRAL ANALYSIS AND SUB-SPECTRAL ANALYSIS (WBF: WAVELET BASIS FUNCTIONS; LD: 
LEVEL OF DECOMPOSITION). BOLD TEXT INDICATES THE BEST PARAMETER SETTINGS. 

Whole-spectral WF LD Accuracy (Mean ± Standard Deviation) Best Accuracy  (with WF and LD Settings)  

  

Daubechies 
(DbAll) 

Db1 [1-12] 83.1% ± 1.6% 

94.8% (with Db1 and 7 levels of decomposition) Db2 [1-12] 82.5% ± 2.1% 

Db3 [1-12] 78.3% ± 2.5% 

Coiflets 

(CoifAll) 

Coif1 [1-12] 81.0% ± 2.5% 

94.8% (with Coif1 and 6 levels of decomposition) Coif2 [1-12] 83.2% ± 1.6% 

Coif3 [1-12] 79.8% ± 2.2% 

Symlets 

(SymAll) 

Sym1 [1-12] 83.2% ± 1.6% 

92.5% (with Sym1 and 7 or 9 levels of decomposition) Sym2 [1-12] 83.2% ± 1.6% 

Sym3 [1-12] 83.1% ± 1.6% 

      
Sub-spectral WF LD Window Sizes for Each Metabolite Best Accuracy  (with WF and WS) 

  

Daubechies 

Db1 1 

ω=[0.02ppm,0.04ppm,…,0.28ppm,0.30ppm] 
94.8% 

(with Coif1 and ω
NAA

=0.16ppm, ω
Cho

=0.16ppm, 

ω
Cr

=0.04ppm, ω
Lip1

=0.18ppm, and ω
Lip2

=0.20ppm) 

Db2 1 

Db3 1 

Coiflets 

Coif1 1 

Coif2 1 

Coif3 1 

Symlets 

Sym1 1 

Sym2 1 

Sym3 1 
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overlap between of adjacent metabolites, and we also need 

enough data points for further data clustering. We analysed 

the effect of the variation that 

                                     , i.e., 15 sets of 

window sizes [-0.01ppm, 0.01ppm], [-0.02ppm, 

0.02ppm],…, [-0.14ppm, 0.14ppm], [-0.15ppm, 0.15ppm 

around each peak of the metabolites) with respect to 

clustering performance (Table 2). The window size for each 

metabolite was varied in turn with the window sizes of the 

remaining metabolites kept fixed, and inherent to this 

process is the assumption that the window sizes are 

independent in terms of optimisation. The first key 

metabolite was Cho (centred at 3.21ppm) and the window 

was varied with window size for the other metabolites fixed 

at the initial smallest value. Subsequently, the window sizes 

for Cr centred at 3.02 ppm, NAA at 2 ppm, Lip2 at 1.3 ppm, 

and Lip1 at 0.9ppm were optimized in turn. 

    Inspired by [21], we further encapsulated the distribution 

of the computed DWT coefficients non-parametrically for a 

metabolite, e.g., NAA, as follows: 
 

  
    {      

           
           

           
           

    }        
 

where   
    denotes the feature vector that encodes the non-

parametric statistics for the DWT coefficients (  
   ) of 

  
     using the minimum coefficient value (   (  

   )), 

25th percentile (   (  
   )), 50th percentile (   (  

   )), 

75th percentile (   (  
   )), and the maximum coefficient 

value (   (  
   )).   

    comprehensively captures the 

information of   
     by encoding the overall distribution of 

its coefficients [21]. Similarly to Equation 2, the feature 

vectors for   
    ,   

   ,   
     

, and   
     

 can be computed 

and denoted as   
  ,   

   ,   
    

,   
    

, respectively. The 

feature vector,   , is therefore defined as follows: 
 

   {   
      

      
     

    
   

    
}                                                                                 

 

and    is a 25-dimensional row vector. Using Equation 3 the 

feature vectors are computed for all   
  to obtain the feature 

matrix, of size       .  

    Unsupervised learning based hierarchical clustering is 

then performed on the feature matrix extracted using whole-

spectral or sub-spectral analysis as described below. 

C. Data Clustering 

    To quantitatively validate and compare the efficacy of our 

DWT based feature extraction method to previous studies, 

we applied agglomerative hierarchical clustering algorithms 

to the feature extraction outputs. Compared to widely used 

k-means clustering, hierarchical clustering requires no 

initialisation settings, and thus can avoid possible local 

minima that could trap the k-means algorithm.   

    For hierarchical clustering a dissimilarity measure was 

specified (the Euclidean distance) between disjoint groups of 

observations according to pairwise dissimilarities between 

the observations in the two groups. An agglomerative (i.e., 

bottom-up) paradigm was used which recursively merges 

pairs of clusters into a single cluster at each level [22]. Pairs 

were merged based on the smallest inter-group dissimilarity 

and representation of the recursive binary agglomeration was 

achieved using dendrograms (i.e., rooted binary trees). 

 
Figure 3: Comparison between different wavelet basis functions in terms of 

the obtained clustering accuracy (A) for both whole-spectral and sub-

spectral analysis. Error bars represent the standard error of the mean (SEM). 
For the whole-spectral analysis, SEM was calculated with respect to 

different decomposition levels. For the sub-spectral analysis, SEM was 

computed with respect to various window sizes. Circles above the error bars 
indicate the maximum accuracy achieved by different wavelet basis 

functions.    

D. Performance Assessment 

    We evaluated the performance of the proposed method 

from a clinical point of view using the following measures: 

precision ( ), recall/sensitivity   ), F-score ( ) and 

clustering accuracy ( ).   
  

     
 where    and    are the 

number of true positives (correct estimations) and false 

positives (incorrect estimations).   
  

     
 where    is the 

number of false negatives (missed estimations). In addition, 

   
   

   
. Furthermore,   provides the overall clustering 

accuracy as a ratio of the number of correct clustering 

(        ) and total number of input spectra ( ) that is 

  
        

 
.                  , and the higher 

TABLE 3 

PERFORMANCE COMPARISON OF THE PROPOSED DWT METHOD (WHOLE-SPECTRAL ANALYSIS USING COIF1 WITH 6 LEVELS OF DECOMPOSITION OR SUB-

SPECTRAL ANALYSIS USING COIF1 WITH 1 LEVEL OF DECOMPOSITION) WITH PCA, PCA+ICA AND NONLINEAR LE METHODS. 
 

Method 
Brain Tissue  

Types 

Predicted Group Membership Precision  

(P) 

Recall  

(R) 

F-Score  

(F) 

Accuracy  

(A) 

Silhouette Statistics 

(μSW ± σSW) 
BER 

Normal GII GIV 

PCA 

Normal 71 8 0 1.00 0.90 0.95 

0.873 0.521±0.230 0.140 GII 0 21 3 0.60 0.88 0.71 

GIV 0 6 25 0.89 0.81 0.85 

PCA+ICA 

Normal 79 0 0 1.00 1.00 1.00 

0.933 0.551±0.213 0.106 GII 0 21 3 0.78 0.88 0.82 

GIV 0 6 25 0.89 0.81 0.85 

LE 

Normal 79 0 0 1.00 1.00 1.00 

0.933 0.612±0.201 0.106 GII 0 21 3 0.78 0.88 0.82 

GIV 0 6 25 0.89 0.81 0.85 

DWT 

Normal 79 0 0 1.00 1.00 1.00 

0.948 0.743±0.278 0.078 GII 0 23 1 0.79 0.96 0.87 

GIV 0 6 25 0.96 0.81 0.88 
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           , the better the performance. In addition, we 

also calculated the balanced error rate [23] (BER), which is 

the average of the errors on each class, and is suitable for 

unbalanced datasets. 

We also evaluated the discriminative ability of the feature 

vector,   , in terms of quantifying intra-cluster tightness and 

inter-cluster separability. To this end we used the silhouette 

statistics that is computed for the  -th data point as follows 

[24]:      
       

           
       , where    is the average distance 

of the  -th data point to the remaining points within the same 

cluster and    is the minimum average distance of the  -th 

data point to any of the remaining clusters. We used the 

mean (   ) and the standard deviation (   ) of     values 

as performance indicators. Higher      with lower     

indicate better partitioning of the clustering results and 

hence the better discriminative ability of the feature used. 

        indicates a proper partitioning whereas     
    indicates an improper partitioning [24]. 

III. RESULTS 

    Figure 3 shows the comparison of the widely-used 

wavelet basis functions based on the clustering accuracy ( ) 

for both whole-spectral and sub-spectra analysis. Examples 

of using Daubechies (Db1, Db2, Db3), Coiflets (Coif1, 

Coif2, Coif3) and Symlets (Sym1, Sym2, Sym3) of the 

whole spectra are shown as DbAll, CoifAll and SymAll. For 

the whole spectra, we tested multiple levels of 

decomposition with standard error of the mean (SEM) 

shown in the Figure 3. The minimum accuracy (40.3%) was 

obtained using Coif1 with 3 levels of decomposition while 

the maximum accuracy (94.8%) was achieved by Coif1 

using 6 levels or Db1 using 7 levels of decomposition (Table 

2). The Coif1 basis function achieved the highest clustering 

accuracy with a low level of decomposition, hence this 

represents the best option for the whole-spectral analysis. In 

addition, for the sub-spectral analysis, we display the SEM 

with respect to various window sizes (Figure 3). We tested 

different values for     ,     ,    ,      , and       as 

aforementioned to maximise clustering accuracy for each 

wavelet basis function. In so doing, we obtained the best 

clustering accuracy (94.8% in Table 2) using the Coif1 basis 

function with window sizes found to be      0.16ppm, 

     0.16ppm,     0.04ppm,       0.18ppm and 

      0.20ppm, respectively. The whole-spectral analysis 

(using Coif1 basis function with 6 levels of decomposition) 

and sub-spectral analysis (using Coif1 with 1 level of 

decomposition) performed identically (Table 2). For the 

whole-spectral analysis, clustering accuracies obtained by 

the Coif1 basis function with different decomposition levels 

showed no significant difference compared to the results of 

using the Db1 basis function, but showed significant 

differences compared to the results of other basis functions. 

For the sub-spectral analysis, clustering accuracies obtained 

by the Coif1 basis function with various window sizes 

showed significant differences compared to the results of 

using other basis functions (Non-parametric Kruskal-Wallis 

test with Dunn’s multiple comparisons was performed with a 

significance level of p<0.05). 

    Comparison results between DWT and other methods are 

provided quantitatively (Table 3). From a clinical point of 

view, the whole (6 levels of decomposition) and sub-spectral 

(1 level of decomposition) DWT method using Coif1 (from 

this point onwards referred to as the proposed DWT method 

with the best settings as seen in Table 2) showed the best 

performance for GII, GIV and Normal spectra, as reflected 

by its highest precision ( ), recall ( ) and F-score ( ) values 

(Table 3). For the case of Normal spectra, PCA+ICA, LE 

and the proposed DWT method obtained       

meaning that all of the Normal spectra were perfectly 

separated without any false positives (    ) and false 

negatives (    ). PCA also obtained a precision of 1 but 

its recall rate of       is lower, as it misclassified 8 

Normal spectra (    ). For the case of GIV spectra, 

PCA, PCA+ICA and LE produce      each with 

      . The proposed DWT method produced      

and thus resulted in a better       . On the other hand, all 

methods missed 6 GIV spectra with       . For the case 

of GII spectra, the proposed DWT method outperformed the 

remaining methods both in terms of precision and recall. 

This method produced the least number of incorrect 

classifications (            ) thus obtaining the best   

(Table 3), but incorrectly classified one GII spectrum as a 

GIV spectrum, and six GIV spectra as GII spectra. In this 

case, the incorrect clustering of GIV spectra in the GII 

cluster, show spectral characteristics that make it non-trivial 

to distinguish them as GIV spectra. Moreover, the proposed 

DWT method showed the highest          , 

demonstrating better separability of clusters of the feature, 

  , than for those extracted using PCA, PCA+ICA and LE 

methods (Table 3). In terms of     LE shows the smallest 

variation in the silhouette values (Table 3).  

IV. DISCUSSION 

Overall, the experimental results suggest that our wavelet 

based feature extraction (by whole-spectral or sub-spectral 

analysis) and clustering provides the maximum accuracy of 

94.8% for tissue separation, which demonstrates an 

improvement compared to the PCA, PCA+ICA, and 

nonlinear LE methods. In addition, our accuracies for 

distinguishing GII from GIV tumours using DWT and 

hierarchical clustering compares well to the results of 

Garcia-Gomez et al. [25], who achieved 92.58% accuracy 

for distinguishing low from high grade gliomas by 

combining data from SV long echo and short echo data, 

which would be difficult to routinely achieve with MRS 

acquisitions due to time limits for patient scanning. A more 

recent approach [26] used Non-negative Matrix 

Factorisation (NMF) to accomplish the feature extraction 

task for SV tumour spectra. However, NMF methods 

inevitably converge to local minima and various 

initialisations provide different dimensionality reduction; 

therefore, NMF requires an elaborate initialisation scheme as 

discussed in previous investigation [26]. In addition, we 

achieved similar BER (0.078 in Table 2) using an 

unsupervised learning based clustering as Ortega-Martorell 
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et al. [26] obtained with a supervised learning based 

framework. The short echo SV MRS data used in the current 

study is a subset of the INTERPRET and eTUMOUR project 

data used in [25] and [26]  and are compatible for acquisition 

parameters and ground truth diagnosis from the 

histopathological and clinical information. 

 Interestingly, our results on whole spectra showed large 

variance of the clustering accuracy with respect to different 

decomposition levels. The decomposition of the MRS 

signals using multiple levels of resolution present with much 

larger variance in accuracy compared to the sub-spectra 

analysis while varying the window sizes. Suggesting sub-

spectral DWT analysis may be more stable. In addition, 

average results of using different basis functions of the sub-

spectral analysis are superior to the average results of using 

the whole spectra (Figure 3). However, the maximum 

clustering accuracy determined from the whole spectra is 

94.8% using the Coif1 basis function and 6 levels of 

decomposition, which is still superior to PCA, PCA+ICA 

and nonlinear LE methods. Nevertheless, the minimum 

clustering accuracy is 40.3% using Coif1 basis function with 

3 levels of decomposition indicating that DWT analysis on 

whole spectra is unstable with respect to decomposition 

levels. 
 

 
 

Figure 4: (a) FLAIR image of the misclassified GII case; (b) T2-weighted 
image of one misclassified GIV case; (c) Blue curve: SV MRS signal of (a); 

(d) Blue curve: SV MRS signal of (b); Planned SV MRS acquisitions are 

shown in cyan boxes overlaid on structural MRI images. 
 

    The improvement provided by the proposed DWT method 

is a better separation between GII and GIV tumours. There is 

one misclassified GII spectrum as GIV (Figure 4(a) and (c)), 

and 6 misclassified GIV as GII (one example shown in 

Figure 4(b) and (d)). The one misclassified GII spectrum has 

unexpectedly high peaks of Lipid (Figure 4(c)). In contrast, 

all misclassified GIV spectra have very low Lipid signal, 

and so resemble GII spectra. The misclassification of these 

tumour spectra may be due to the fact that our ground truth 

is defined by local biopsy or resected tumour samples that 

do not accurately represent the tissue that has been 

investigated by MRS. The tumour biopsy samples used for 

histopathology have typical volumes in mm
3
, whereas the 

SV MRS data are acquired from a volume in cm
3
 [14]. In 

particular, the highest grade tumour cells observed in the 

biopsy determine the clinical assignation of tumour grade 

and may only represent a small proportion of the tissue in 

the MRS voxel. Additionally GIV tumours are frequently 

large heterogeneous masses that have areas of low-grade 

appearance by 
1
H MRS [27], and the most malignant region 

may not have been sampled by a single voxel placement. 

    Our analysis may have some potential limitations. As 

aforementioned, the whole-spectral analysis suffers from 

large variance of the clustering accuracy when 

decomposition levels of the DWT are varied. For the sub-

spectral analysis, we rely upon pre-definition of the key 

biochemical peaks, which require elaborate tuning prior to 

application of DWT. However, once the window sizes are 

fixed, more SV MRS data (i.e., more normal, GII, and GIV 

SV MRS data) may be added without retuning. In addition, 

there may be diagnostically useful contributions to the 

spectra from biochemicals with lower overall visibility. For 

example quantified levels of myo-inositol, glutathione, 

glutamate-glutamine have been used in previous tumour 

classification studies, metabolites whose major contributions 

to an MR spectrum are outside of our selected spectral 

regions [13], [18]. Our selection of five key biochemical 

used in this study may have certain subjectivity. 

Nevertheless, these metabolites and lipid peaks are well 

known and widely used, features to discriminate brain 

tumour grades. For example, Opstad et al. [18] indicated that 

Choline, Creatine, Lactate and Lipid (1.3 ppm) were the 

most discriminative for GII and GIV tumour, and NAA and 

Lipid (0.9 ppm) were useful for classifying normal spectra. 

Moreover, we only included GII and GIV patients for this 

study due to lack of reliable GIII MRS data. However, we 

can envisage a straightforward application of the current 

DWT based feature extraction and unsupervised clustering 

framework for SV MRS dataset incorporating GIII cases. 
 

V. CONCLUSIONS 

    To the best of our knowledge, this is the first study using 

DWT and unsupervised clustering to separate SV MRS data 

from different brain tumour types. We tested both DWT 

based whole-spectral and sub-spectral analysis, and we have 

concluded that a sub-spectral analysis is sufficient by using 

windowed key metabolites to distinguish different grades of 

the brain tumour. The achievement is threefold: (a) we 

compared different DWT settings including various wavelet 

basis functions for both whole-spectral and sub-spectral 

analysis, different window sizes for the sub-spectral 

analysis, and multiple levels of decomposition for the whole-

spectral analysis, and we have found that Coif1 wavelet 

obtained the best clustering results; (b) we compared DWT 

based sub-spectral analysis with DWT feature extraction on 

the whole spectra. Quantitative evidence show that our sub-

spectral analysis is more stable irrespective of the window 
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sizes selected for the key metabolites; (c) we also compared 

to conventional feature extraction methods such as PCA, 

PCA+ICA, and newly applied nonlinear LE algorithm, and 

the comparison demonstrated that both our DWT based 

whole-spectral and sub-spectral analysis can further improve 

the separation between GII and GIV tissue types while 

maintaining the accuracy of separating tumour spectra from 

normal brain spectra in controls. In summary, our DWT 

based feature extraction and hierarchical clustering produces 

promising brain tumour classification that has potential for 

analysis of larger multi-centre datasets and be applicable to 

automated analysis of the large datasets obtained in 

multivoxel 
1
H MRS using chemical shift imaging. 
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