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1 Introduction

Video surveillance is a widely-researched area in computer vision field.1, 2 In particular, the surveil-

lance of perimeter of critical infrastructures (CIs) has particularly gained an enhanced importance

worldwide due to increased threats of terrorist incidents in the recent past.3 Therefore, the need

remains to devise robust surveillance systems that enable effective monitoring of the region outside

the perimeter of a CI and generate an early warning before a threat has approached.

Generally, one of the key tasks in surveillance applications is to reliably perform simultaneous

visual tracking of multiple targets over time, multi-target tracking. Indeed, for several years, a

substantial research has been aimed at devising robust multi-target tracking algorithms to deal

with different scenarios and varying challenges.4–11 Inevitably, in order to assess the effectiveness

Copyright 2019 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made
for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper are prohibited.
(PRE-PRINT) L. Li, T. Nawaz, J. Ferryman. “Performance analysis and formative assessment of visual trackers
using PETS critical infrastructure surveillance datasets”, Journal of Electronic Imaging 28(4), 043004 (2019), doi:
10.1117/1.JEI.28.4.043004.

1



and suitability of trackers in CI surveillance scenarios, the availability of appropriate datasets is of

paramount importance.

For nearly two decades, the goal of the Performance Evaluation of Tracking and Surveillance

(PETS) workshops has been to foster the emergence of computer vision technologies particularly

for tracking by providing a plethora of datasets and evaluation metrics that allow an accurate assess-

ment and comparison of such methods.12 In recent years, PETS workshops (PETS’14, PETS’15,

PETS’16, PETS’17, PETS’18) have had a special focus in disseminating to community the real-

world surveillance datasets concerning the protection of CIs, which has otherwise been lacking in

other similar evaluation campaigns and datasets.

This paper presents a thorough performance analysis and formative assessment of several state-

of-the-art multi-target visual trackers on real-world challenging datasets released generally as a part

of PETS’14-18 workshops and particularly as a part of PETS’15 tracking challenge to enable de-

velopment and testing of intelligent surveillance systems, which work robustly under a wide range

of challenges and conditions for CI perimeter protection (e.g. power plants, prisons, communica-

tion sites).

The remainder of this paper is organized as follows. Section 2 reviews the related work, which

is followed by description of datasets in Sec. 3 and trackers in Sec. 4. The experimental validation

is presented in Sec. 5. The paper is finally concluded in Sec. 6.

2 Related work

The challenges in creating benchmark datasets for the performance evaluation of automated vi-

sual surveillance methods are broad.12, 13 The main aim of automated surveillance is frequently

to locate and track objects of interest or to determine specific events and/or behaviors involving
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the objects and/or the environment. In creating datasets whose content may be analyzed by al-

gorithms/systems, these objects, events and behaviors must be presented within the recorded sce-

narios in a realistic and meaningful way. These range from, but are not limited to, varying scene

conditions such as weather and illumination/lighting (including moving shadows and reflections)

to the number (density), size and dynamics of objects present within the monitored scene. Such

variation may be captured as a range of recorded scenarios, with increasing levels of complexity.

Since the drive behind creation of such benchmark datasets is to evaluate the performance of devel-

oped surveillance methods/systems, attention must be paid as to how the evaluation will be carried

out when recording the scenarios.12 The creation of ground truth for the evaluation of detection,

tracking and event/behavior analysis can be extremely time consuming and therefore the scenario

content and length, as well as the level(s) of annotation to be made, must be carefully considered.14

Furthermore, in addition to producing a dataset that may be used as an evaluation benchmark for

a broad spectrum of developed automated surveillance methodology, adopting well known and

established metrics may assist more readily the researchers tasked to establish comparisons in the

performance of state of the art visual surveillance systems.15, 16

Over the years, several evaluation campaigns have been introduced, providing a wealth of

datasets to facilitate testing and evaluation of video surveillance algorithms.17 These include the

Context Aware Vision using Image-based Active Recognition (CAVIAR) project1, Evaluation du

Traitement et de l’Interpretation de Sequences vidEO (ETISEO)2, imagery Library for Intelligent

Detection Systems (i-LIDS)3, Classification of Events, Activities and Relationships (CLEAR)4,

1http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/. Accessed May 2019.
2http://www-sop.inria.fr/orion/ETISEO/index.htm. Accessed May 2019.
3http://www.ilids.co.uk. Accessed May 2019.
4http://www.clear-evaluation.org/. Accessed May 2011.
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Visual Object Tracking (VOT) challenge5, Multiple Object Tracking (MOT) challenge6, and PETS

workshops. CAVIAR focused on indoor city surveillance scenarios and made contributions by re-

leasing several datasets for building entrance lobby and shopping mall scenes. ETISEO provided

numerous datasets covering indoor and outdoor scenarios (building corridor and entrance, road,

parking areas for cars and aircrafts, metro) for the evaluation of different surveillance tasks in-

cluding detection, tracking, classification, and event recognition. i-LIDS was another important

evaluation campaign that was introduced by the UK’s Centre for Applied Science and Technol-

ogy (CAST) in collaboration with the Centre for the Protection of National Infrastructure (CPNI).

It focused on the evaluation of surveillance systems on numerous datasets including real-world

CCTV video footage for scenarios such as underground station, traffic, and airport. CLEAR was

aimed at evaluating detection, tracking, person identification, head pose estimation, and acous-

tic event classification algorithms. In collaboration with the Computers in the Human Interaction

Loop (CHIL) project18 and i-LIDS, CLEAR made the dataset available online that covered indoor

(meeting room, lecture room) and outdoor (traffic) scenarios. VOT challenge is dedicated for the

evaluation of single-target trackers and being conducted since 2013 using the existing commonly-

used datasets covering varying scenarios including indoor scenes, sport, concert, and traffic. Unlike

the VOT challenge, MOT is aimed at the evaluation of multi-target trackers using commonly-used

existing datasets. MOT challenge is being organized since 2014. PETS is probably the longest

running evaluation campaign for tracking as well other surveillance tasks such as people counting,

hand posture classification, and event detection. Since 2000, PETS workshops are being organized

while providing a large amount of datasets for a wide variety of scenarios and applications.

5http://www.votchallenge.net/index.html. Accessed May 2019.
6https://motchallenge.net/. Accessed May 2019.
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There is however still an absence of ample publicly available challenging datasets for the eval-

uation of approaches on realistic CI perimeter scenarios. Those researching the creation of auto-

mated visual surveillance systems require benchmark datasets that provide realistic settings, envi-

ronmental conditions and scenarios. It can be very time consuming to create enough scenarios to

adequately test some approaches.

3 Datasets

Two challenging datasets concerning real-world CI perimeter protection scenarios released as part

of recent PETS workshops are as follows. The ARENA dataset is a multi-sensor dataset and in-

cludes a selection of video sequences that were recorded as part of the EU project ARENA7, which

addresses the design of a flexible surveillance system to enable situational awareness and determi-

nation of potential threats on critical mobile assets in transit. The P5 dataset is a multi-modal

multi-sensor dataset recorded as part of the EU project P58 and involves different staged activities

around the perimeter of a nuclear plant. The selected scenarios from ARENA and P5 datasets are

grouped into ‘Normal’, ‘Warning’ and ‘Alarm’ categories. ‘Normal’ alludes to activities that do

not pose any threat. ‘Warning’ refers to abnormal activities that may potentially develop into a

threat. ‘Alarm’ refers to activities that cause a threat in the scene and hence require immediate

action.

Between ARENA and P5 datasets, varying illumination and weather conditions are covered.

ARENA dataset has been recorded under clearer sunny weather conditions, whereas P5 dataset has

been recorded under more adverse (cloudy/rainy) weather conditions with a comparatively poorer

7http://www.arena-fp7.eu/. Accessed May 2019.
8http://p5-fp7.eu/. Accessed May 2019.
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Table 1 Sensor properties for ARENA dataset
ID Model Resolution (pxl) Frame Rate

ENV RGB 3 PTZ Axis 233D 768x576 7
TRK RGB 1 Basler BIP2-1300c-dn 1280 x 960 30
TRK RGB 2 Basler BIP2-1300c-dn 1280 x 960 30

visibility. For visualisation of datasets, please visit the webpage9. The datasets are described next.

3.1 ARENA dataset

The ARENA dataset comprises of a series of multi-camera video recordings where the main subject

is detection and understanding of human behavior around a parked vehicle. The main objective is

to detect and understand different behaviors from visual (RGB) cameras mounted on the vehicle

itself.

One visual camera ENV RGB 3 is used (Table 1) that is installed at the location as shown in

Fig. 1 to cover an approximate area of 100m x 30m. This camera is not onboard the CI (i.e. a vehi-

cle carrying assets) but mounted in the environment to provide a global view of the monitored area.

Moreover, two onboard non-overlapping visual cameras (TRK RGB 1,TRK RGB 2) are mounted

at corners of a truck in ARENA dataset at the locations shown in Fig. 1. Table 1 lists sensors while

describing their respective characteristics. The dataset scenarios (‘Normal’, ‘Warning’, ‘Alarm’)

are listed in Table 2.

3.2 P5 dataset

The dataset contains sequences with different activities staged around the perimeter of a nuclear

power plant in Sweden. The dataset was recorded using multiple types of surveillance sensors

including visual and thermal cameras.

9http://www.cvg.reading.ac.uk/PETS2015/a.html. Accessed May 2019.
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Fig 1 Sensor locations and their FOVs for ARENA dataset

There are five visual and thermal sensor positions covering a large area with 550m from one

end to the other on the land side (see Fig. 2)10. It takes 10-15 minutes to walk from one end to

the other. Three visual cameras (VS 1, VS 2, VS 3) at the locations shown in Fig. 2 are selected

to mainly cover the road along the water area. Most of the scenarios take place in the monitored

region. Two of the thermal sensors (TH 3, TH 4) as shown in Fig. 2 are installed side by side with

visual cameras, with the aim to provide similar field of views (FOVs) to that of visual cameras.

The main benefit of the joint use of thermal and visible sensors is that different modalities provide

complementary information of the scene captured by thermal infrared spectrum and visible light

spectrum, respectively. Two more thermal sensors TH 1 and TH 2 are installed at the locations

shown in Fig. 2, which mainly cover the long road along the fence outside the nuclear plant. The

sensor properties are summarized in Table 3. The dataset scenarios (‘Normal’, ‘Warning’, ‘Alarm’)

are listed in Table 4.
10Note that the focus of this study is visual tracking only.
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Table 2 List and description of scenarios for ARENA dataset. Key. SC: scale changes; Occ: occlusions; PC: pose
changes; PR: person running; Cl: clutter; VS: varying speed.

Scenario type ID Description Challenges
Normal N1 ARENA Persons walking in a group SC, Occ, PC
Warning W1 ARENA Driver falls after being hit by someone Occ, SC, PR

Alarm
A1 ARENA Driver involved in a fight with someone SC, PC, Occ, Cl
A2 ARENA Driver attacked by someone from a car SC, VS, Occ

4 Trackers

For nearly two decades, a large number of multi-target visual trackers have been proposed to deal

with varying challenges.16 Among them, those trackers that use the so-called tracking-by-detection

paradigm have shown very promising results,4, 5, 7, 10 partly thanks to the great improvements in de-

tection accuracy using pre-trained object models.19, 20 In this study we specifically use the follow-

ing state-of-the-art trackers that have been published in prestigious venues: LP2D,4 DP-NMS,5

SORT,7 ELP,10 CEM,9 DCO,6 DCO-X,8 and SegTrack.11 We used publicly available software

implementations of trackers with default parameters to generate their tracks. Additionally, for a

fair comparison, all trackers are fed with the same detection results which are obtained by running

the well known DPM detector.20 Two types of pre-trained models are used to generate detection

bounding boxes: one for person targets and the other one for vehicle targets. The initial detec-

tions are pruned by applying non-max suppression (NMS) with the same threshold value as in the

Fig 2 Sensor locations and their FOVs for P5 dataset
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Table 3 Sensor properties for P5 dataset (VS: Visual, TH: Thermal)
ID Model Resolution (pxl) Frame Rate

VS 1 Basler BIP2-1300c-dn 1280 x 960 25
VS 2 Basler BIP2-1300c-dn 1280 x 960 15
VS 3 Basler BIP2-1300c-dn 1280 x 960 25
TH 1 FLIR SC655 640x480 25
TH 2 FLIR SC655 640x480 12.5
TH 3 FLIR SC655 640x480 25
TH 4 FLIR A65 640x512 30

original work.5

The selected trackers generally formulate the task of tracking multiple targets as a data asso-

ciation problem: it links a set of target hypotheses produced by object detector at a frame level

into a set of consistent trajectories each with a unique ID. Due to the discrete nature of the distinct

detections in frame and the disjunct frames in video sequence, a Directed Acyclic Graph (DAG)

is normally applied in these tracking frameworks to model the entire spatio-temporal space in a

consistent way. Various optimization strategies can then be applied thereafter to solve for glob-

ally optimal solution, ranging from using linear programming solved with the simplex algorithm,4

the dynamic programming with non-maximal suppression (termed DP-NMS),5 the classical Joint

Probabilistic Data Association technique,7 or the minimum-cost network flow algorithm,10 to

the energy minimization solution using conjugate gradient descent9 or the conditional random

field.6, 8, 11 Additionally, different image features and/or dynamic models have also been utilized

to handle more complicated tracking challenges4–11 especially when the scene gets crowded or

when human interactions are involved.

Table 4 List and description of scenarios for P5 dataset. Key. SC: scale changes; PC: pose changes; VS: varying
speed; Cl: clutter; Occ: occlusions; PV: poor visibility.

Scenario type ID Description Challenges
Normal N1 P5 A vehicle driving across the scene SC, PC, VS, Cl
Warning W1 P5 A group of 6 people walking across the scene Occ, PV, SC, Cl, VS
Alarm A1 P5 An abandoned bag is picked up suspiciously SC, PC, Cl, VS
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5 Experimental validation

This section presents the experimental validation by first describing the performance assessment

criteria (Sec. 5.1) and test sequences (Sec. 5.2), which are to be used in the experimental analysis

of trackers (Sec. 5.3). The section ends with a discussion (Sec. 5.4).

5.1 Performance assessment criteria

To enable a precise quantitative performance assessment and ranking of various tracking algo-

rithms, an accurate and detailed annotations of datasets have been generated. Indeed, the ground

truth is obtained for every single frame of the sequences used. The annotation is obtained in the

format of bounding box that effectively encloses each object in every frame. Note that, in the

case of occlusion, only the visible part of the object is annotated. Next we describe the tracking

assessment criteria that use the generated ground truth information to quantify performance in this

paper.

Performance evaluation of tracking algorithms is a non-trivial task. In fact, for a thorough

tracking assessment, several aspects needs to be assessed for which numerous metrics have been

proposed over the years.15, 16, 21–23 The choice of approrpiate metrics is quite challenging and

could depend mainly on the application under consideration. Tracking evaluation accounts for

the three key aspects including tracking accuracy (extent of match between an estimation and the

corresponding ground truth), cardinality error (difference between the number of estimated targets

and the number of ground-truth targets) and ID change (wrong associations between estimated and

ground-truth targets).16 We used the widely-used Multiple Object Tracking Accuracy (MOTA),15

which takes into account the cardinality error (in the form of false positives and false negatives)
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and ID changes without explicitly considering accuracy. MOTA is defined as follows:

MOTA = 1− ∑
K
k=1(c1|FNk|+ c2|FPk|+ c3|IDCk|)

∑
K
k=1 vk

, (1)

where the parameters c1, c2 and c3 determine the contributions from the number of false nega-

tives (|FNk|), number of false positives (|FPk|) and number of ID changes (|IDCk|) at a frame k,

respectively, and vk is the number of ground-truth targets at frame k. c1 = 1,c2 = 1,c3 = log10 as

described in the paper.24 False negatives are the missed targets at frame k and false positives are

the estimated targets with overlap Ok,t < τ̄ for a pre-defined threshold, τ̄ , such that

Ok,t =
|Āk,t ∩Ak,t |
|Āk,t ∪Ak,t |

, (2)

for a tth pair of ground-truth and estimated bounding boxes at frame k. Āk,t and Ak,t denote the

occupied regions on image plane for ground-truth and estimated bounding boxes, respectively. τ̄ is

often set to 0.5.25 MOTA≤ 1: the higher MOTA, the better the performance. To evaluate tracking

accuracy, a more recent measure, Multiple Extended-target Lost-Track ratio (MELT),16 is used.

MELT provides accuracy evaluation using information about lost-track ratio. Let Ni be the total

number of frames in ith ground-truth track and Nτ
i is the number of frames with overlap score

below a threshold τ , then the lost-track ratio λ τ
i is computed as follows:

λ
τ
i =

Nτ
i

Ni
. (3)
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MELT for a particular τ is computed as follows:

MELTτ =
1
V

V

∑
i=1

λ
τ
i , (4)

where V is the total number of ground-truth tracks, and

MELT =
1
S ∑

τ∈[0,1]
MELTτ , (5)

provides the overall tracking accuracy for a full variation of τ , where S is the number of sampled

values of τ . MELT ∈ [0,1]: the lower the value the better the performance.

The set of measures described above primarily focus on evaluating end performance that is

important particularly for ranking trackers. To obtain a deeper insight as why a certain end perfor-

mance is achieved, it would also be desirable to analyze the factors (false positives, false negatives,

ID changes) that contribute to the attainment of a certain end performance.26 Therefore, to comple-

ment the evaluation using above metrics and further aid the performance analysis, we also adopt a

recently proposed method26 that enables revealing a dissected picture of the performance of track-

ers based on the analysis of probability density functions (PDFs) of different fault types (i.e. false

positives, false negatives, ID changes) in a sequence. Inspired from analysis of PDFs, the method

offers a more detailed picture of a tracker’s performance by revealing two aspects: tracker’s ro-

bustness and per frame concentration corresponding to each fault type, both are quantitatively

accounted for in the form of following two performance scores. The first score tells the ability of

a tracker to track without producing a fault across a sequence, and is called robustness to a fault
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type (R):

R f p = 1−
K f p

K
; R f n = 1−

K f n

K
; Ridc = 1− Kidc

K
; (6)

such that K f p is the number of frames containing false positive(s), K f n is the number of frames

containing false negative(s), and Kidc is the number of frames containing ID change(s). R f p ∈ [0,1],

R f n ∈ [0,1], Ridc ∈ [0,1]: the higher the value (R f p / R f n / Ridc), the better the ability. The second

score tells the tendency of a tracker to produce a fault type per frame, and is called per frame

concentration of a fault type (PFC):

PFC f p =
1
K

K

∑
k=1

FPk;PFC f n =
1
K

K

∑
k=1

FNk; (7)

PFCidc =
1
K

K

∑
k=1

IDCk,

where FPk, FNk and IDCk are the number of false positives, false negatives and ID changes, re-

spectively, at frame k of a sequence that has a total of K frames.

5.2 Sequences

Table 5 provides a summary of the sequences (S1 to S11) that are selected from both P5 and

ARENA datasets. The sequences belong to normal, warning and alarm scenarios, and cover key

tracking challenges including occlusions, scale changes, pose changes, clutter, poor visibility, and

varying target speed. Note that this paper focuses on visual tracking only, with vehicle and person

target types. Figures 3 and 4 show visualization of camera views as used in this study for ARENA

and P5 datasets, respectively.
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Table 5 Summary of sequences.

Sequence ID No. of frames No. of targets Target type
S1 N1 P5-Tg-VS 1 400 1 Vehicle
S2 N1 P5-Tg-VS 3 387 1 Vehicle
S3 W1 P5-Tg-VS 3 180 6 Person
S4 W1 P5-Tg-VS 1 180 6 Person
S5 N1 ARENA-Tg ENV RGB 3 289 5 Person
S6 N1 ARENA-Tg TRK RGB 1 513 5 Person
S7 N1 ARENA-Tg TRK RGB 2 684 5 Person
S8 W1 ARENA-Tg ENV RGB 3 155 3 Person
S9 W1 ARENA-Tg TRK RGB 1 240 3 Person
S10 A1 ARENA-Tg ENV RGB 3 295 4 Person
S11 A1 ARENA-Tg TRK RGB 2 670 4 Person

5.3 Results and analysis

Figures 5, 6 and 7 show performance scores of all trackers on every sequence (S1-S11) using dif-

ferent assessment criteria (MOTA, MELT, R f p, R f n, Ridc, PFC f p, PFC f n, PFCidc). On S1 CEM,

DCO, DCO-X and DP-NMS consistently achieves the best performance based on most assessment

criteria (Fig. 5, 6 and 7). The worst performance on S1 has however been mostly reported by either

SegTrack or LP2D. This is apparently due to presence of clutter in S1 that has caused distractions

for SegTrack and LP2D (see Fig. 8(a,b)). S2 has substantial background clutter, pose changes and

scale changes of target (Fig. 8(c,d)). DP-NMS has coped with these challenges comparatively bet-

ter than other trackers to achieve the best performance based on most assessment criteria, although

Fig 3 Visualization of ARENA camera views under consideration. (a) ENV RGB 3; (b) TRK RGB 1; (c)
TRK RGB 2.
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Fig 4 Visualization of P5 camera views under consideration. (a) VS 1; (b) VS 3.

the tracker still has difficulty maintaining the unique target ID across the sequence (see Fig. 8(c,d)).

S3 is particularly challenging due to severe occlusions and poor visibility due to cloudy/rainy con-

Fig 5 Radar charts showing the computed performance scores of trackers on every sequence (S1-S11) based on (a)
MOTA and (b) MELT.
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Fig 6 Radar charts showing the computed performance scores of trackers on every sequence (S1-S11) based on (a)
R f p, (b) R f n, and (c) Ridc.
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Fig 7 Radar charts showing the computed performance scores of trackers on every sequence (S1-S11) based on (a)
PFC f p, (b) PFC f n, and (c) PFCidc.
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ditions making to it very hard to distinguish among targets. LP2D has performed comparatively

better than others to track under these challenging conditions (see Fig. 8(e)). S4 also suffers from

poor visibility. SegTrack has found particularly difficult to track and has obtained the worst per-

formance based on several assessment criteria (Fig. 6(a,c), Fig. 7(a,c)). On the other hand, DCO

has perfomed reasonably better than others; see a sample qualitative result of DCO that is able to

correctly track two out of five targets under such challenging conditions (Fig. 8(f)). S5 possesses

challenges of target scale and pose changes, and occlusions. DCO has consistenly shown the worst

performance based on most assessment criteria due to its inability to distinguish among IDs of dif-

ferent targets and high concentration of false positives (see Fig. 9(a)); for a comparison, we show

corresponding qualitative result of ELP (see Fig. 9(b)) that has performed much better than DCO.

On S6, DCO-X has more often outperformed others across different assessment criteria due to its

better ability to deal with challenges present in this sequence that are occlusions, scale changes and

pose changes; see a sample qualitative result in which this tracker is able to track under a partial

occlusion of a target (Fig. 9(c)). LP2D, on the other hand, has shown the worst performance based

on majority of assessment criteria (Fig. 5(a), 6(a,c), 7(a,c)). On S7, the best performance has been

reported by either DCO-X, LP2D or DP-NMS, whereas DCO has consistenly achieved the worst

performance based on majority of assessment criteria (Fig. 5(a), 6(c), 7(a,b,c)). See a sample

qualitative result for DCO-X on S7 in Fig. 9(d). The key challenge present in S8 is occlusion.

Like S7, trackers have shown mixed performance trends on S8 with the best performance achieved

either by SegTrack, CEM, or ELP, whereas SORT has shown the worst performance more often

than others. Fig. 9(e) shows a sample frame where CEM has coped very well with a severe oc-

clusion. S9 possesses challenge of occlusion, scale changes and a target running, and SegTrack

has more often shown a better performance than other trackers; see the visualization of scene with
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Fig 8 Qualitative results of trackers on key frames from P5 sequences (S1-S4). (a) S1 (SegTrack); (b) S1 (LP2D); (c)
S2 (DP-NMS); (d) S2 (DP-NMS); (e) S3 (LP2D); (f) S4 (DCO).

a sample qualitative result of SegTrack in Fig. 9(f). S10 is challenging due to presence of scale

changes, pose changes, severe occlusions, and clutter. On this sequence, SegTrack has more often

performed better than others by achieving the best performance based on four assessment criteria

(Fig. 5(a,b), Fig. 6(b), Fig. 7(b)). See a sample qualitative result for SegTrack in the scene with

a target (driver) involved in fight with other targets (Fig. 9(g)). S11 captures the same scenario as

S10, but from a different viewpoint. On S11, the best performance has been obtained by different

trackers depending on assessment criteria, but the worst performance has been consistently shown

by either LP2D or DCO. See the visualization of scene with a sample qualitative result for LP2D

in Fig. 9(h).

To infer the overall performance trends of trackers, Table 6 provides the average performance

scores computed across the test sequences (S1-S11) using each assessment criteria (the best scores

are highlighted in bold). Moreover, the performance rankings (1-8) obtained based on each of the
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Fig 9 Qualitative results of trackers on key frames from ARENA sequences (S5-S11). (a) S5 (DCO); (b) S5 (ELP);
(c) S6 (DCO-X); (d) S7 (DCO-X); (e) S8 (CEM); (f) S9 (SegTrack); (g) S10 (SegTrack); (h) S11 (LP2D).

criteria are presented in Fig. 10. A rank of ‘1’ is the best and a rank of ‘8’ is the worst. The

best MOTA is reported by DCO-X followed by DP-NMS, ELP, SORT, CEM, DCO, LP2D and

SegTrack (Table 6, Fig. 10). Interestingly, MELT ranks SegTrack the best followed by DCO-X,

LP2D, DP-NMS, ELP, CEM, SORT and DCO. The reason behind disagreements between rankings

obtained with MOTA and MELT is that the former provides an end performance by quantifying

cardinality error and ID changes, and the latter instead provides an end performance by quantifying

tracking accuracy. A deeper insight and understanding of performance can be provided by means of

R and PFC scores. DP-NMS is the best among all trackers in terms of R f p, indicating its enhanced

robustness to track over extended period of time without producing any false positive. See Fig. 10

for a full ranking of trackers based on R f p. Likewise, DP-NMS outperforms other trackers based

on PFC f p too, which shows its lesser tendency of producing a higher per frame concentration

of false positives than other trackers. Additionally, based on R f n and PFC f n, SegTrack is the

best, thus showing its better ability to deal with false negatives as compared to remaining trackers.
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Table 6 Average performance scores of trackers across test sequences (S1-S11).

Tracker MOTA MELT R f p R f n Ridc PFC f p PFC f n PFCidc

CEM 0.119 0.811 0.478 0.317 0.954 0.906 1.273 0.060
DCO -0.066 0.853 0.742 0.262 0.917 0.856 1.759 0.153
DCO-X 0.294 0.777 0.747 0.278 0.941 0.387 1.361 0.101
DP-NMS 0.271 0.790 0.765 0.252 0.916 0.326 1.504 0.103
LP2D -0.067 0.781 0.402 0.469 0.769 1.188 0.962 0.304
SORT 0.130 0.830 0.641 0.276 0.870 0.588 1.522 0.164
SegTrack -0.888 0.766 0.249 0.601 0.898 2.282 0.688 0.159
ELP 0.168 0.807 0.632 0.298 0.947 0.529 1.378 0.060

Moreover, in terms of dealing with ID changes, CEM is the best both based on Ridc and PFCidc. We

checked the statistical significance of performance rankings of trackers across all sequences using

Welch ANOVA test. Statistical significance is achieved at the standard 5% significance level.

We also compared the rankings obtained by trackers in this study against their rankings ob-

tained on MOT Challenge. We noticed that out of eight trackers evaluated in this study, most

(DCO-X, DP-NMS, ELP, CEM, LP2D and SegTrack) can be found under 2D MOT 2015 Chal-

lenge11; hence we used 2D MOT 2015 for comparison here. On 2D MOT 2015, ELP is ranked

the best followed by SegTrack, LP2D, DCO-X, CEM, DP-NMS based on MOTA (the common

metric used in this study as well as in 2D MOT 2015), which is different from the ranking ob-

tained in this study that declares DOC-X the best followed by DP-NMS, ELP, CEM, LP2D and

SegTrack (see Fig. 10). The disagreement in rankings is apparently due to the differences in test

scenarios of datasets used in this study and MOT datasets. Unlike MOT, the datasets in this study

are primarily designed for surveillance scenarios involving perimeter protection of critical infras-

tructures. Consequently, in the present datasets the cameras are all mounted at high (top-downish)

positions, whereas MOT datasets mostly account for video footages filmed from chest or eye level,

thus offering different challenges, applications, and complexity levels.

11https://motchallenge.net/results/2D MOT 2015/. Accessed May 2019.
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Fig 10 Performance rankings (1-8) of trackers based on each performance assessment criterion. Rank = 1 is the best.

Fig. 11 shows the average performance ranking of trackers across all eight performance as-

sessment criteria (MOTA, MELT, R f p, R f n, Ridc, PFC f p, PFC f n and PFCidc). Overall, DCO-X is

ranked the best tracker based on all criteria followed by ELP, CEM, DP-NMS, SegTrack, LP2D,

DCO and SORT.

It is relevant to mention that the presented performance metrics are expected to have varying

(higher/lower) impact in the evaluation depending on application under consideration. For exam-

ple, in an autonomous driving application in which the goal might be to avoid collision with objects

present on/off the road (e.g. oncoming vehicles, pedestrians, traffic lights/signs, etc.), tracking

accuracy and cardinality error would be more critical and important to compute than maintaining

unique target IDs. Therefore, for tracking evaluation in this application, the metrics such as MELT,

R f p, R f n, PFC f p, and PFC f n are expected to have a higher impact. On the other hand, in a sport

(e.g. Football) application where the goal might be to track and analyze match performance of in-

dividual player(s), maintaining unique target IDs would be very important to assess. Therefore, for

tracking evaluation in this application, the metrics such as MOTA, Ridc and PFCidc are expected to
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Fig 11 Average performance ranking of trackers across all eight performance assessment criteria. Rank = 1 is the best.

have a higher impact.

5.4 Discussion

The R and PFC scores also enable to provide formative feedback to aid in addressing limitations of

trackers.26 Indeed, the analysis based on false positives could aid in analyzing the effect on tracking

performance originating from the detection stage. For instance, SegTrack shows the worst PFC f p

and R f p as compared to remaining trackers (Table 6, Fig. 10), indicating a particular need of

improvement at its detection stage. Similarly, inferior performance in terms of false negatives (i.e.,

PFC f n, R f n) can point toward improvement at the detection stage, and/or inability to effectively

temporally connect small tracks (‘tracklets’). For example, DCO, DP-NMS and SORT have shown

inferior PFC f n and R f n, which is likely because of lack of an effective dedicated strategy to connect

tracklets in these trackers as compared to the remaining ones. Likewise, the analysis based on ID

changes (PFCidc, Ridc) provide a formative feedback regarding the tracking stage. For example,

CEM and ELP are the best in terms of PFCidc and Ridc, showing they have a more effective ID

management mechanism than other trackers; whereas LP2D has shown the worst PFCidc and Ridc,

indicating the need on improving its ability to distinguish among IDs of different trackers.
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We believe the recent advancements in MOT Challenge could potentially help in addressing

identified trackers shortcomings at detection and tracking stages. Generic neural network-based

pre-trained target models have shown promising results in terms of an enhanced detection accu-

racy and robustness. For example, many recent trackers27–29 have adopted Convolutional Neural

Networks (CNN) based frameworks to show significant performance improvements on MOT Chal-

lenges. Moreover, other trackers have used Recurrent Neural Networks (RNN) using multiple cues

over a temporal window for performing long-term tracking by effectively resolving data associ-

ation problem even under occlusions30 or using an instance-aware tracking approach integrating

single-target tracking techniques for multi-target tracking to better manage and distinguish targets

IDs.31

6 Conclusions

This paper presents statistically significant performance ranking and comparison as well as forma-

tive assessment of several state-of-the-art multi-target visual trackers on real-world surveillance

datasets concerning perimeter protection of critical infrastructures (CI), released publicly as a

part of recent PETS workshops and cover a wide range of challenges and conditions. We used

well-known and recent performance assessment criteria for a thorough experimental analysis and

comparison.

Overall, the results show DCO-X to be the best-ranked tracker, making it more suitable to be

used in CI perimeter protection applications. SegTrack is identified to be the tracker requiring a

particular improvement at its detection stage. DCO, DP-NMS and SORT lack an effective tracklet

linking strategy as compared to other trackers. LP2D is found to be needing improvement in its ID

management strategy.
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