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ABSTRACT

The growing interest in developing video tracking algorithms has not
been accompanied by the development of commonly used evaluation
criteria to assess and to compare their performance. Researchers of-
ten present trackers’ results on different datasets and evaluate them
with different performance measures thus hindering both formative
and summative quality assessment. In this paper, we present a pro-
tocol to evaluate the performance of tracking algorithms that tests
video trackers using a set of trials and a pre-defined set of sequences
and that enables objective and reproducible performance evaluation
of trackers using ground truth information. Each trial highlights
strengths and weaknesses of a tracker on simulated test scenarios
on real sequences that represent real-world scenarios. Moreover a
new evaluation measure is introduced that allows us to summarize
the performance of a tracker based on the lost-track-ratio curve. The
validation and the effectiveness of the proposed protocol is demon-
strated experimentally on three trackers and its implementation is
made available online to the research community.

Index Terms— Video tracking, performance evaluation, proto-
col, trial, perturbation

1. INTRODUCTION

Video trackers are important temporal filters used in many applica-
tions ranging from human-computer interfaces to security and from
behavior understanding to event detection. Despite their importance
and their increasing diffusion, there is still a lack of a commonly
accepted evaluation procedure that would allow effective evaluation
and comparison of tracking algorithms.

Although several benchmark datasets and evaluation measures
already exist, the analysis of the strengths and weaknesses of a
specific tracker based only on the results reported in papers is still
in most cases very difficult because of the lack of a commonly
used evaluation protocol. Examples include the framework intro-
duced by PETS (Performance Evaluation of Tracking and Surveil-
lance), ETISEO (Evaluation du Traitement et de l’Interpretation de
Sequences vidEO), CAVIAR (Context Aware Vision using Image-
based Active Recognition), CLEAR (Classification of Events, Activ-
ities and Relationships). Other smaller-scale evaluation frameworks
include comprehensive proposals such as the one in [1], and sim-
ple approaches such as the one based on “pseudo-synthetic video”
sequences [2], on frame-based and object-based metrics [3], on
the Label and Size Based Evaluation Measure (LSBEM) [4], or on
measuring the tracking difficulty using a reflective model [5]. None
of these frameworks has yet been widely taken up by the research
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Fig. 1. Schematic diagram of the proposed evaluation Protocol for
Tracking (PFT). Vt and It are the input video sequence and the cor-
responding target initialization data, respectively. Vt,i and It,i are
the input to the tracker after appropriately modifying Vt and It for
the tests. Rjt,i is the trajectory estimated by tracker Tj on trial i, Sjt,i
is its final evaluation score computed with reference to the ground
truth Gt.

community, thus limiting the opportunity to effectively assess and
easily compare video tracking results.

The contribution of this paper is threefold: (i) we propose a new
comprehensive performance evaluation measure, (ii) we define an
evaluation protocol and (iii) we make available its corresponding
software implementation to facilitate its use by the research commu-
nity. The protocol consists of a set of sequences and a set of evalua-
tion procedures, or trials, which simulate real-world conditions such
as changes in illumination, frame dropping, noise and various ini-
tialization errors. Each trial uses a predefined input-type generated
by synthetically modifying either the test sequence or the initializa-
tion (bounding box) of the tracker. We also introduce an evaluation
measure based on the area under the lost-track-ratio curve (AUCλ),
which effectively summarizes the performance of a tracker. The
source code of the evaluation protocol is made available online at
http://www.eecs.qmul.ac.uk/~andrea/pft.html.

This paper is organized as follows. Section 2 presents the pro-
posed evaluation protocol and describes the trials, the evaluation cri-
teria and the dataset. This is followed by the experimental validation
in Section 3. Section 4 concludes the paper.

2. THE EVALUATION PROTOCOL

Seven trials have been defined to evaluate the performance of video
trackers. Each trial represents a scenario that trackers are likely to
face in real-world applications. These trials cover scenarios such as
errors in the initialization of the tracker, variations in illumination,
delayed generation of the tracking results and noisy input data. Fig-
ure 1 shows the schematic of the proposed evaluation Protocol for
Tracking (PFT). Let a tracker Tj be evaluated on trial i of the pro-
tocol, with j = 1, 2, ...,M and i = 0, 1, ..., Z, where M is the
number of trackers under test and Z+1 is the number of trials in the
protocol (Z = 6), as discussed in the following subsection.
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Fig. 2. (a-c) Example of perturbed initializations for Trials 1, 2 and
3, respectively; (d) Example of a test frame after adding the zero-
mean Gaussian noise (Trial 4) with σ2 = 2(σ2
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b ); (e-g) Ex-

ample of frames in Trial 6 after changing illumination: (e) original
frame, (f) the frame after increasing the illumination, (g) the frame
after decreasing the illumination.

The first trial, Trial 0, is the reference trial that evaluates trackers
using the original initialization, It, and test sequence, Vt,without any
modifications. Then, the trial i initialization, It,i, and test sequence,
Vt,i, are generated for the subsequent trials by adding a predefined
perturbation to It, or to Vt, respectively.

Let a tracker Tj be tested on Vt,i and It,i to obtain the tracking
result Rjt,i, the estimated trajectory of the target on trial i. Rjt,i is
evaluated with respect to the ground truth trajectory Gt of the target
to compute performance scores Sjt,i for tracker j on trial i. The
values of Sjt,i are finally used to compare the trackers under analysis.

2.1. Trials

Trials 1, 2 and 3 evaluate the robustness of trackers to initializa-
tion errors (e.g. possible errors of a detector). The tests are based
on adding perturbations to the initialization data, namely the posi-
tion and/or the size of the bounding box. Trial 1 adds perturbations
to the position of the initializing bounding box only, while keeping
its width and height unchanged (Fig. 2(a)); Trial 2 adds perturba-
tion to the size (width and height) only (Fig. 2(b)); whereas Trial
3 adds perturbations both to the position and the size of the initial-
izing bounding box (Fig. 2(c)). The amount of perturbation intro-
duced in the data is a function of the size of the bounding box (width
along x-direction and height along y-direction) with the constraint
of a minimum 50% overlap between the modified bounding box and
the original initialization. In each trial, the trackers are evaluated on
a set of 20 perturbed initializations to test their robustness to initial-
ization perturbations with a particular test sequence.

Trials 4, 5 and 6 evaluate the robustness of trackers to typical
challenges such as noisy input generated by low-cost sensors, varia-
tions in illumination conditions and frame dropping. Trial 4 evalu-
ates the robustness of trackers to the presence of noise in the video
sequence. Zero-mean Gaussian noise is added to the three color
channels, with σr = 8.59, σg = 8.40 and σb = 11.96, as estimated
from a low-quality webcamera (Creative webcam VF0330). Three
test sequences are generated with twice, four times and six times the
estimated variances (σ2
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difficult noisy scenarios. Fig. 2(d) shows an image from PETS2010
datasets after adding the Gaussian noise with 2(σ2
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evaluates the robustness of trackers under frame skipping to simulate
a potential latency of the tracker in processing the input and gener-

ating results. Frame skipping can possibly result in abrupt shifts in
the position of the target [6]. In this trial, video sequences are gen-
erated by regularly dropping a certain number of frames (m − 1)
from the video sequence where m = 2, 4, 6, 8. Finally, Trial 6
evaluates the robustness of trackers to illumination changes. Two
test sequences are generated by either increasing (+∆L) and de-
creasing (−∆L) synthetically the illumination over time. The il-
lumination is changed by adding or subtracting (with saturation)
∆L = 0, 1, 2, ..., 200 to or from the intensities of pixels of frames
(k = 1, 2, 3, ..., 201), respectively. When the number of frames in
the video sequence K > 201, the amount of illumination change
in the remaining frames is kept constant to ∆L = 200. When K <
201, the amount of illumination change is ∆L = 0, 1, 2, ..., (K−1)
in frames k = 1, 2, 3, ...,K respectively. Fig. 2(e-g) shows the visu-
alization of frames (sequence taken from www.spevi.org) after
both an increase and a decrease of the illumination.

In the experiments, the trials are run several times on probabilis-
tic trackers and the mean of their results is evaluated for an accurate
performance evaluation.

2.2. Evaluation criteria

The evaluation criteria measure the performance of the tracking re-
sults with reference to a ground truth. We use as starting evaluation
criteria the overlap measure, Ok, at each frame k and the lost-track
ratio, λ. These criteria will allow us to define a new comprehensive
measure of performance, the area under the lost-track ratio curve
(AUCλ), as described below.

The overlap measure, Ok, quantifies the amount of overlap be-
tween the estimated and the ground-truth bounding boxes. Ok is
computed at every frame where the target exists [7]:

Ok =
|TPk|

|TPk|+ |FPk|+ |FNk|
, (1)

where |TPk| is the number of pixels that are correctly detected at
frame k as belonging to the target, |FPk| is the number of pixels
incorrectly detected and |FNk| is the number of pixels missed by
the tracker. The larger Ok, the better the tracking result.

The lost-track ratio, λ, is computed based on Ok over a test
sequence [7]. A track in a frame k is considered to be lost when the
amount of overlap between the estimated track and the ground truth
is smaller than a certain value, i.e. Ok ≤ τ , where τ ∈ [0, 1]. λ is
the ratio between the number of frames with a lost track, Nl, and the
total number of frames N of the estimated target trajectory:

λ =
Nl
N
. (2)

Because the appropriate value of τ is different for different
tracking applications, we consider the variation of λ for a full range
of τ values, from τ = 0 to τ = 1 with an increment of ∆τ = 0.01.
We refer to these parameterized values of the lost-track ratio as λ(τ).
Based on λ(τ), we finally introduce a compact measure, AUCλ,
that quantifies the performance of trackers by computing the area
under the lost track ratio curve as

AUCλ = ∆τ

1∑
τ=0

λ(τ), (3)

with 0 ≤ AUCλ ≤ 1. The lower the area under the lost track ratio
curve (AUCλ), the better the results (Fig. 3). The ideal performance
of a tracker corresponds to AUCλ = 0.



Fig. 3. Example of performance comparison of two tracking results
in terms of AUCλ. The tracking result on the left (AUCλ = 0.516)
is preferable to that on the right (AUCλ = 0.847) because of a
smaller AUCλ.

2.3. Dataset

The selection of the dataset for PFT is made considering the diver-
sity of targets (rigid and articulated) and the widespread availability
of and access to the test sequences. The selected targets cover a range
of tracking challenges such as partial and total occlusions, 360 de-
grees turnings, tilting, scale changes and random-path movements.
The targets are shown in Figure 4: a vehicle (H1) from PETS20001,
a person walking (H2) from PETS20102, a head (H3) from Clem-
son3, and a head (H4) from the SPEVI4 dataset. H1 is a rigid target
(initial size: 227 × 108) whose minimum and maximum size in the
sequence are 2067 and 24516 (pixels), respectively. The sequence
containingH1 has 160 frames (frame size: 576×768). H2 is an ar-
ticulated target having an initial size of 30× 87 pixels. Its minimum
and maximum size are 180 and 3444 (pixels), respectively. The se-
quence containingH2 is of 150 frames (frame size: 576×768). The
initial size of H3 is 39× 46 pixels and its minimum and maximum
size are 192 and 2646 (pixels) respectively. The corresponding se-
quence has 501 frames (frame size: 96 × 128) and is characterized
by pan, tilt and zoom movements of the camera. The initial size of
H4 is 62 × 66 pixels and its minimum and maximum size are 370
and 40128 pixels, respectively. The corresponding sequence has 550
frames (frame size: 240× 320).

Each tracker is evaluated on a total of 52 (13×4) sequences gen-
erated in the trials by modifying the dataset. In the following section,
we shall highlight the strengths and weaknesses of three trackers by
evaluating their performance using the proposed protocol.

3. EXPERIMENTAL VALIDATION

The proposed protocol is validated by evaluating and comparing the
color-based adaptive Particle Filter tracker (PF) [8], the Mean Shift
tracker (MS) [9] and the Hybrid tracker [10]. The results are sum-
marized in Table 1 and Figure 5.

The performance evaluation results of the three trackers show
that PF and the Hybrid tracker are more robust to cope with occlu-
sions compared to MS, as shown for example in trial 0 with H2 and
H3 (both involves occlusions) in Table 1. The evaluation with H1
and H2 shows that MS and Hybrid are more robust to perturbations
in the initialization than PF, as reflected in the variations of their
AUCλ scores (Table 1) on trials 1-3 (note that in a few cases, the
variations are comparable for all trackers). WithH3, MS is found to

1ftp://ftp.cs.rdg.ac.uk/pub/PETS2000/
2http://www.cvg.rdg.ac.uk/PETS2010/a.html#s2l1
3http://www.ces.clemson.edu/~stb/
4http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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Fig. 4. Visualization of targets used in PFT: (a) Vehicle (PETS
2000); (b) Person (PETS 2010); (c) Head (Clemson); (d) Head
(SPEVI).

be more sensitive to perturbations in initialization than PF and Hy-
brid. The evaluation results of PF with H4 show that the variations
of its AUCλ scores are smaller than those of MS and Hybrid; how-
ever its mean AUCλ scores are considerably higher. AUCλ scores
for three trackers on trial 1− 3 are plotted in Fig. 5.

The overall evaluation results show that PF and Hybrid are
more robust to noise than MS. This is reflected in the variations of
their AUCλ scores computed for the three levels of Gaussian noise
(twice, four times and six times (σ2
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b ))) on trial 4 with all

the targets (Table 1). The values of variations are lower for PF and
Hybrid as they are more robust to noise than MS.

The Hybrid tracker is robust to fast movements of a target as
shown in the variations of its AUCλ scores on trial 5, which are
generally smaller than those of MS and PF (Table 1). PF has a better
performance on H3 and H4, whereas MS has a better performance
on H1 and H2, as shown in the variations of the AUCλ scores on
trial 5 (Table 1). Interestingly, the variation of the AUCλ scores of
MS on H2 is even lower than that of the Hybrid tracker.

Finally, the evaluation results show that MS is sensitive to illu-
mination changes compared to PF and Hybrid, as reflected in its per-
formance on trial 6. Although the variations of its AUCλ scores are
mostly very small, its mean AUCλ scores on trial 6 are generally
very large (Table 1) showing that its performance declined signifi-
cantly both for the case of increasing and decreasing illumination.
PF and Hybrid have better performance. Figure 6 shows the mean
AUCλ scores of the trackers in each trial and the average AUCλ
scores of the trackers across all the trials: the Hybrid tracker has the
best performance, followed by PF and then MS.

In summary, based on the outcomes of the protocol, the obser-
vations that were offered in [8, 9, 10] have been confirmed numer-
ically, thus providing an objective ground for comparison among
trackers and their characteristics. PF is found to be robust to occlu-
sions. MS and Hybrid are found to be more robust to cope with ini-
tialization perturbations on H1 and H2; however, the performance
of trackers changed on H3, which contains a larger target and cam-
era motion. PF and Hybrid showed better performance than MS in
the presence of noise in the sequence, as expected by methods us-
ing particle filtering verus a deterministic gradient descent approach.
Hybrid is better at dealing with fast movements compared to the
other two trackers. Finally, PF and Hybrid are better at coping with



Fig. 5. AUCλ scores of PF (blue), MS (green) and the Hybrid
tracker (red) for 20 perturbed initializations on each trial. First col-
umn: Trial 1; Second column: Trial 2; Third column: Trial 3. First
row: H1; Second row: H2; Third row: H3; Fourth row: H4.

Table 1. Mean (µ) and standard deviation (σ) of the AUCλ scores
for all the trials.

Trial Target PF MS Hybrid
µ (σ) µ (σ) µ (σ)

0

H1 0.418 0.380 0.370
H2 0.668 0.823 0.543
H3 0.516 0.847 0.631
H4 0.865 0.436 0.390

1

H1 0.563 (0.1170) 0.491 (0.0775) 0.483 (0.0794)
H2 0.626 (0.0861) 0.829 (0.0137) 0.555 (0.0272)
H3 0.595 (0.0430) 0.663 (0.1235) 0.686 (0.1061)
H4 0.844 (0.0338) 0.509 (0.0718) 0.500 (0.0723)

2

H1 0.463 (0.0532) 0.446 (0.0449) 0.444 (0.0540)
H2 0.698 (0.1311) 0.815 (0.0630) 0.621 (0.0898)
H3 0.593 (0.0555) 0.755 (0.1447) 0.728 (0.0898)
H4 0.814 (0.0716) 0.614 (0.1577) 0.522 (0.0800)

3

H1 0.567 (0.1015) 0.508 (0.0781) 0.506 (0.0759)
H2 0.607 (0.0605) 0.820 (0.0430) 0.586 (0.0530)
H3 0.609 (0.0576) 0.770 (0.1232) 0.741 (0.0816)
H4 0.813 (0.0395) 0.555 (0.0818) 0.542 (0.0902)

4

H1 0.965 (0.0014) 0.946 (0.0088) 0.937 (0.0053)
H2 0.848 (0.1210) 0.814 (0.1699) 0.768 (0.1082)
H3 0.876 (0.0060) 0.877 (0.0102) 0.869 (0.0048)
H4 0.899 (0.0058) 0.862 (0.0174) 0.881 (0.0086)

5

H1 0.530 (0.1936) 0.400 (0.0358) 0.362 (0.0080)
H2 0.628 (0.2274) 0.896 (0.0692) 0.644 (0.1927)
H3 0.594 (0.1508) 0.764 (0.1728) 0.663 (0.1562)
H4 0.705 (0.1336) 0.698 (0.2491) 0.410 (0.0329)

6

H1 0.535 (0.1572) 0.501 (0.1787) 0.472 (0.1637)
H2 0.699 (0.2613) 0.862 (0.0594) 0.688 (0.2467)
H3 0.835 (0.1470) 0.931 (0.0145) 0.924 (0.0375)
H4 0.864 (0.0044) 0.940 (0.0017) 0.938 (0.0006)

illumination changes.

Fig. 6. Mean AUCλ scores for each tracker in each trial (0 - 6) and
overall mean AUCλ scores (Average) for each tracker across all the
trials.

4. CONCLUSIONS

We presented an evaluation protocol and a new compact perfor-
mance measure to quantify the performance of video trackers and
enable the comparison of their robustness in different real-world
scenarios. The variability of these scenarios is controlled by in-
corporating perturbations to initializations and variations in illumi-
nation, noise and frame rate of the test sequences. The proposed
protocol was validated on three well-known trackers and their evalu-
ation results confirm the analysis of previous studies thus validating
the effectiveness of the protocol. Our current work focuses on the
performance evaluation and comparison of a larger set of trackers
using the proposed evaluation protocol.
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