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A Protocol for Evaluating Video Trackers
Under Real-World Conditions

Tahir Nawaz and Andrea Cavallaro

Abstract—The absence of a commonly adopted performance
evaluation framework is hampering advances in the design of
effective video trackers. In this paper, we present a single-
score evaluation measure and a protocol to objectively compare
trackers. The proposed measure evaluates tracking accuracy and
failure, and combines them for both summative and formative
performance assessment. The proposed protocol is composed of
a set of trials that evaluate the robustness of trackers on a range
of test scenarios representing several real-world conditions. The
protocol is validated on a set of sequences with a diversity
of targets (head, vehicle, person) and challenges (occlusions,
background clutter, pose changes, scale changes) using six state-
of-the-art trackers, highlighting their strengths and weaknesses
on more than 187000 frames. The software implementing the
protocol and the evaluation results are made available online and
new results can be included, thus facilitating the comparison of
trackers.

Index Terms—Performance evaluation, video trackers, evalua-
tion measure, protocol, trials.

I. INTRODUCTION

UNLIKE OTHER areas of image processing and computer
vision such as disparity estimation [1], optical flow

computation [2] and video coding [3] that consistently use
commonly accepted evaluation procedures, video tracking still
lacks a standard way to evaluate and compare algorithmic
performance.

Although a number of efforts have been made toward
performance evaluation of trackers in the form of evaluation
campaigns (ETISEO, CLEAR, PETS, i-LIDS, CAVIAR) and
small-scale evaluation frameworks ([4], [5], [6], [7], [8]),
the performance of trackers is still tested using different
evaluation criteria and varying datasets, thus hindering an
effective evaluation and comparison. Moreover, because of the
complexity of the evaluation task, many performance criteria
contain multiple measures [4], [6], [7], which are difficult to
combine in order to rank various algorithms. A single-score
evaluation criterion that can comprehensively encapsulate the
overall tracking performance would be desirable to simplify
the performance comparison task.

Performance evaluation may involve the computation of the
discrepancy between the estimated and the ground-truth posi-
tion and size of the target [4], [6], [9], [10]. The discrepancy is
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computed based on a distance-based criterion [9], [10], [11]
or an overlap-based criterion [4], [7], [12]. Distance-based
criteria use the concept of distance minimization between
estimation and ground truth to evaluate performance. Naive
distance-based evaluation may not include target size varia-
tions in the evaluation procedure [8] and may not effectively
reflect instances of tracking failure [13] that refers to the
case of no-overlap between estimated and ground-truth states.
Overlap-based criteria compute the amount of overlap be-
tween estimation and ground truth. Overlap-based evaluation
mostly takes into account target size variations (with some
exceptions [4], [5], [6]) and can therefore detect instances
of tracking failure. However, existing overlap-based criteria
[5], [7], [8], [14] use hard thresholds or fixed parameters that
restrict their use to application-specific tracking performance
assessment.

In this paper, we propose a threshold-independent overlap-
based criterion that summarizes tracking performance based on
a new evaluation measure, which takes into account target size
variations. The proposed measure quantifies how accurately
and how long a target is tracked across a sequence. Moreover,
we propose a protocol with a comprehensive set of trials that
evaluate trackers on a wide range of test scenarios representing
several real-world operational conditions. The trials quantify
the robustness of a tracker to noisy inputs, processing and
communication delays, video compression and varying scene
conditions such as illumination changes. To the best of our
knowledge, this is the first initiative that enables evaluating the
robustness of the performance of tracking algorithms under
such a wide variety of real-world conditions. The resulting
performance evaluation tool is made available online as an
open source software1.

The organization of the paper is as follows. The proposed
evaluation criterion and the protocol are discussed in Sec. II
and Sec. III, respectively. This is followed by the experimental
validation in Sec. IV. Section V concludes the paper.

II. COMBINED TRACKING PERFORMANCE SCORE

Let an estimated trajectory R be represented as:

R = {(xk, yk, Ak)}K
R

k=1, (1)

where (xk, yk) is the estimated target position (e.g. its cen-
troid), Ak is the information about the estimated target area
in the kth frame and KR is the total number of frames for
which the tracker generated an output. Let the corresponding
ground-truth trajectory be:

G = {(x̂k, ŷk, Âk)}K
G

k=1, (2)

1http://www.eecs.qmul.ac.uk/~andrea/pft2
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(a) (b) (c)

Fig. 1. (a) Schematic diagram of the proposed evaluation measure formulated by combining contributions that quantify tracking accuracy and tracking failure.
(b) The result of Mean-Shift (MS) [16] (in red) and of the online boosting-based tracker (Boost) [17] (in black) on the AVSS 2007 sequence containing
target H4 (described in Sec. III). The CoTPS values are 0.628 for MS and 0.770 for Boost. β for MS and Boost is computed using Eq. 8. (c) Comparison
between values of β computed adaptively. CoTPS plotted for a range of β values for the tracking results of Boost and MS from the example in (b). The
interpretation of the performance can significantly change depending on the value of β. A preset value could lead to an incorrect evaluation.

where (x̂k, ŷk) is the ground-truth target position, Âk is the
ground-truth target area in the kth frame and KG is the total
number of frames in which the target exists. Ak and Âk may
be in the form of a bounding box, a bounding ellipse or a
bounding contour. Without loss of generality, let Ak and Âk
be bounding boxes that define the width and the height of the
target.

We firstly compute the amount of overlap, Ok, across R as
follows [15]:

Ok =
|TPk|

|TPk|+ |FPk|+ |FNk|
, (3)

where Ok ∈ [0, 1] and | · | represents the cardinality of
a set. TPk, FPk and FNk are the sets of true positive
(correctly estimated), false positive (incorrectly estimated) and
false negative (missed) pixels of a target at frame k. Note that
Ok = 0 if the tracker does not produce a bounding box when
the target is present or if a bounding box is produced when
no target is present.

The tracking accuracy quantifies the extent to which the
estimated trajectory overlaps the ground-truth trajectory, con-
sidering only frames with Ok 6= 0 (Fig. 1(a)) and is computed
as [15]:

λ̂ =
N̂l

N̂
, (4)

where N̂l = |F̂l| and F̂l = {fk : Ok ∈ (0, τ̂), τ̂ ∈
(0, 1], ∀k}; and N̂ = |F̂ |, with F̂ = {fk : Ok 6= 0, ∀k},
is the number of frames with Ok 6= 0.

Computing λ̂ for a fixed value of τ̂ necessitates an
application-dependent decision, since different values of τ̂ may
be appropriate for different tracking tasks. To overcome this
limitation, instead of computing λ̂ for a fixed value of τ̂ ,
we accumulate its value over the full range of τ̂ values. In
particular, we use an increment of ∆τ̂ = 0.01 to obtain λ̂(τ̂)
and therefore, the score that quantifies tracking accuracy across
the sequence, Ω, is computed as

Ω = ∆τ̂
∑

τ̂∈(0,1]

λ̂(τ̂), (5)

where Ω ∈ [0, 1]. The smaller Ω, the higher the tracking
accuracy. Ω can be regarded as an approximation of the area
under the curve of λ̂(τ̂).

Tracking failures correspond to instances of target loss. The
tracking failure score, λ0 (λ0 ∈ [0, 1]), is defined as

λ0 =
N0

N
, (6)

where N0 = |F 0|, with F 0 = {fk : Ok = 0, ∀k}, and
N = |F |, with F = {fk : ∀k}. The smaller λ0, the smaller
the tracking failure score.

We combine the information on tracking accuracy and
tracking failure in a single score to facilitate performance
ranking. The proposed Combined Tracking Performance Score,
CoTPS (CoTPS ∈ [0, 1]), is computed as follows:

CoTPS = βΩ + (1− β)λ0, (7)

where β is a penalty, with β ∈ [0, 1]. The smaller CoTPS, the
better the tracking performance. Figure 1(b) plots Ok for two
tracking results whose comparison is shown using CoTPS.

Note that a preset value of β may lead to incorrect perfor-
mance evaluation (see Fig. 1(c)). β is computed adaptively:

β =
N̂

N
, (8)

where N̂ is the number of frames in which the tracker has
partially or completely tracked the target (Ok > 0), thus
restricting the inclusion of any extra influence of Ω in the
computation of CoTPS. Similarly, (1 − β) applied to λ0 is
proportional to (N−N̂), i.e. the number of frames in which the
tracker has failed (Ok = 0), which are also the same frames
used in the estimation of λ0, thus restricting the inclusion of
any extra influence of λ0 in the computation of CoTPS.

Let us consider the result of the Mean-Shift tracker (MS)
[16] in Fig. 1(b). In this example, a penalty of β = 0.328
(computed using Eq. (8)) is applied to Ω since the tracker is
successful (Ok > 0) in 32.8% frames (N̂ = 79 and N = 241).
Similarly, a penalty of (1− β) = 0.672 is applied to λ0 since
the tracker has failed (Ok = 0) in 67.2% frames (N−N̂ = 162
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Fig. 2. Conceptual illustration of various distortions that may affect
the performance of a tracker in a real-world application. These distortions
include initialization errors caused by detector, sensor noise, latency due to
transmission over the channel or due to the delayed generation of results by
the tracker, illumination changes in the scene, and video compression.

and N = 241). The adaptive computation of β allows us to
include accurate contributions of Ω and λ0 in the estimation
of CoTPS.

III. EVALUATION PROTOCOL

Trackers operate under various challenges in real-world
applications and therefore these challenges should be consid-
ered when evaluating and comparing performance. Tracking
challenges include initialization errors caused by a detector;
sensor noise; latency due to the transmission of video data over
a channel or due to the delayed generation of results by the
tracker; changing illumination in the scene; and compression
of the video data (Fig. 2). The proposed evaluation protocol
enables evaluation under these challenges to quantify the
robustness of trackers.

Given a set of M trackers2 T = {Tj}Mj=1, we aim to evaluate
tracker Tj on a set of trials P = {Pi}Zi=1, where each trial
simulates a specific real-world operational condition.

Trials 1, 2, 3 (P1, P2, P3) evaluate the robustness of trackers
to initialization errors possibly introduced by a detector.
These errors are simulated by perturbing the position of the
initializing bounding box in Trial 1 (P1), the size (width and
height) of the bounding box in Trial 2 (P2), and both the
position and size in Trial 3 (P3). The amount of perturbation
is added while ensuring at least an overlap of Ô% between
the bounding boxes of the original (ground-truth) initialization
and the perturbed initialization. The number of perturbed
initializations generated on P1, P2 and P3 are n1, n2 and n3,
respectively.

Trial 4 (P4) evaluates robustness to noisy video data gen-
erated by low-cost sensors. On P4, a set of n4 test sequences
are generated by adding to the original sequence l̂× (the
estimated variance of) the zero-mean Gaussian noise of a low-
quality webcamera (Creative webcam VF0330). The estimated
standard deviations of its red, green and blue channels are
σ1 = 8.59, σ2 = 8.40 and σ3 = 11.96, respectively.

Trial 5 (P5) evaluates robustness to latency due to transmis-
sion over a channel or due to the delayed generation of the
results by the tracker. On P5, the protocol generates a set of

2Please note that the index j refers to different trackers or to different
parameter settings for the same tracker.

n5 test sequences by periodically dropping m−1 frames from
the original sequence.

Trial 6 (P6) evaluates robustness to changing illumination
in the scene. On P6, a set of n6 test sequences are generated
by synthetically increasing (+∆L) or decreasing (−∆L) illu-
mination over time (in the original sequence) with saturation
by adding (subtracting) ∆L = 0, 1, . . . , L to (from) the pixel
values of frames k = 1, 2, . . . ,K, respectively. If the number
of frames in the sequence is K > (L+1), a value of ∆L = L
is maintained for the remaining frames.

Trials 7, 8 (P7, P8) evaluates robustness to bandwidth re-
duction of the video data. On P7, test sequences are generated
by gradually increasing the compression ratio of the original
sequence. We chose Motion JPEG compression because of its
suitability for video tracking applications. In Motion JPEG, the
extent of compression ratio depends on a quality parameter ζ.
The higher ζ, the better the visual quality and the lower the
compression ratio, where ζ ∈ [0, 100]. To ensure evaluation
under strong compression ratios, a set of n7 test sequences are
generated on this trial by gradually reducing ζ. On P8, a set
of n8 test sequences are generated by reducing the resolution
of the original video frames by ρ%.

On each trial Pi, Tj is tested with the original (ground
truth) initialization It and the original video sequence Vt which
contains a target Ht, where H = {Ht}Jt=1 is a set of targets.
To study its variation in performance, each tracker Tj is tested
with the initialization It,i and test sequence Vt,i which are
generated on trial Pi by modifying It or Vt in a pre-defined
manner such that the applied modification simulates a specific
real-world scenario: It,i = Pi(It), and Vt,i = Pi(Vt).

Let Rjt,i be the trajectory of target Ht estimated by testing
tracker Tj on trial Pi with Vt,i and It,i: R

j
t,i = Tj(Vt,i, It,i).

The performance of tracker Tj is computed by evaluating
the estimated trajectory Rjt,i of the target with respect to
its ground-truth trajectory Gt using the proposed evalua-
tion criterion (Sec. II) thus obtaining the performance score:
CoTPSjt,i = Ψ(Rjt,i, Gt), where Ψ(·) represents the proce-
dure involved in the evaluation criterion (see Sec. II). Based
on CoTPSjt,i, we compare the performance of the trackers
under consideration.

Table I summarizes the trials and the values of the cor-
responding parameters (these parameters accomplished sta-
tistically significant results, as discussed at the end of Sec.
IV). Using the proposed protocol, a tracker is tested on
each sequence of the dataset in original form and in its 24
variations generated on different trials. Each tracker is tested
with 60 perturbations of the initialization on the original video
sequence. A deterministic tracker is therefore run 85 times,
whereas a probabilistic tracker is run 85 × n times for its
evaluation using the protocol, where n denotes the number of
runs for each test of a trial.

We selected the dataset by taking into account the diver-
sity of targets and test scenarios, their availability and the
challenges involved. The dataset contains three target classes,
namely head, vehicle and person. The sequences are chosen
from PETS, CAVIAR, AVSS and SPEVI datasets, which
are publicly available. A range of tracking challenges are
present in the dataset such as partial/total occlusions, pose
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TABLE I
DESCRIPTION OF EIGHT TRIALS COVERING VARIOUS REAL-WORLD
CHALLENGES (‘RWC’) AS ILLUSTRATED IN FIG. 2. THE PROTOCOL

GENERATES 60 INITIALIZATIONS BY ADDING PERTURBATIONS TO THE
ORIGINAL (GROUND-TRUTH) TARGET INITIALIZATION AND 24 TEST

SEQUENCES BY MODIFYING THE ORIGINAL VIDEO.

RWC Trial Description Parameters

Initialization
errors

P1 Position n1 = 20, Ô = 50

P2 Size n2 = 20, Ô = 50

P3 Position and size n3 = 20, Ô = 50

Sensor noise P4 Noisy video n4 = 6, l̂ = 1, 2, . . . , 6
Latency P5 Frame dropping n5 = 4, m = 2, 4, 6, 8
Illumination P6 Changing illumination n6 = 2, L = 200
Bandwidth
reduction

P7 Video compression n7 = 4, ζ = 75, 50, 25, 0
P8 Resolution reduction n8 = 8, ρ = 10, 20, . . . , 80

TABLE II
DESCRIPTION OF THE DATASET. CH

ini, C
H
min, C

H
max,K AND Cf DENOTE,

IN PIXELS, THE INITIAL TARGET SIZE, THE MINIMUM TARGET SIZE,
MAXIMUM TARGET SIZE, THE NUMBER OF FRAMES IN THE SEQUENCE
AND THE FRAME SIZE, RESPECTIVELY. KEY. PC: POSE CHANGES; SC:
SCALE CHANGES; SSC: SMALL SC; PO: PARTIAL OCCLUSIONS; TO:

TOTAL OCCLUSIONS; BC: BACKGROUND CLUTTER.

Target Class CH
ini CH

min CH
max K Cf Challenges

H1 Head 139 × 91 7488 15965 430 576 × 720 PC, SSC
H2 Head 62 × 66 370 40128 550 240 × 320 PC, SC, PO
H3 Vehicle 227 × 108 2067 24516 160 576 × 768 SC, PC
H4 Vehicle 99 × 103 870 10197 241 576 × 720 BC, SC, PC
H5 Person 30 × 87 180 3444 150 576 × 768 PO, TO, SC, PC
H6 Person 73 × 28 638 4410 750 288 × 384 PO, PC, SC, BC

changes, background clutter and small/large scale changes.
The selected sequences include two head targets H1 and H2

from SPEVI [18], two vehicle targets H3 and H4 from PETS
2000 [19] and AVSS 2007 [20], respectively, and two person
targets H5 and H6 from PETS 2010 [21] and CAVIAR [22],
respectively.

Table II summarizes the dataset in terms of initial target
size (CHini), minimum and maximum sizes of the visible part
of target (CHmin and CHmax), number of frames (K), frame size
(Cf ) and the challenges present in the sequence.

IV. EXPERIMENTAL ANALYSIS AND VALIDATION

We demonstrate the effectiveness of the proposed score
and protocol by evaluating and comparing six state-of-the-art
trackers. The selected trackers can be divided into two cate-
gories: standard trackers and boosting-based trackers. Standard
trackers are Mean Shift (MS) [16], the fragments-based tracker
(FragTrack) [23], and Particle Filter (PF) [24]. Boosting-based
trackers are Boost [17], the semi-supervised on-line boosting-
based tracker (SemiBoost) [25], and beyond semi-supervised
boost (BeyondSemiBoost) [26]. The parameters of all trackers
are fixed throughout the experiments. We discuss the perfor-
mance comparison on each trial Pi, on each target Hj and on
each target class, and verify the statistical significance of the
obtained results. Each tracker is tested on a total of 187144
frames. PF, being a probabilistic tracker, is run n = 10 times
on each test of each trial and the mean value of its CoTPS
on the n runs is considered. The choice of n = 10 is made
based on the analysis of the behavior of the mean CoTPS
of PF computed by running it with each of the six targets
H1, H2, ...,H6 for a variation of n: the fluctuation in the mean
CoTPS tends to decrease after n = 5 and becomes stable for
n→ 10.

(a)

(b)

Fig. 3. Performance comparison of trackers on each trial. (a) Mean CoTPS
(µC ) of trackers on each trial (P1, P2, ..., P8) with all targets. (b) CoTPS
of trackers on each trial computed with all targets; Boost (red), SemiBoost
(green), BeyondSemiBoost (blue), MS (black), FragTrack (cyan) and PF
(magenta). The dispersion value (dC ) for a tracker is computed as difference
between its maximum and minimum CoTPS values on a trial.

A. Trial-wise comparison

Figure 3 shows the mean CoTPS (µC) of trackers on each
Pi computed with all targets and their robustness in terms of
the dispersion of their CoTPS (dC) computed with all targets
as dC = CoTPSmax − CoTPSmin, where CoTPSmax and
CoTPSmin are the maximum and the minimum values of
CoTPS of a tracker on a trial, respectively.

MS consistently tracks more accurately in the presence
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of initialization errors than other trackers (smaller µC on
P1, P2, P3 in Fig. 3(a)); whereas FragTrack shows inferior
performance than other trackers in the presence of initializa-
tion errors. In fact, unlike MS, FragTrack uses a fragment-
based representation of the target [23] and a perturbation
in its initialization can lead to the inclusion of non-target
patches in the target model thus resulting in the accumulation
of tracking errors over time. Among the remaining track-
ers, Boost shows closer performance to MS on these trials
(Fig. 3(a)) followed by PF and the other two boosting-based
trackers. Additionally, in terms of robustness to initialization
errors, MS and PF outperform the boosting-based trackers and
FragTrack (smaller dC of MS and PF in Fig. 3(b)). The reason
of the increased sensitivity of the boosting-based trackers is
that any perturbation to initialization may affect their learning
process. The performance of the BeyondSemiBoost decreased
the most with noisy video data (highest µC on P4). The
online adaptation model of Boost enables it to cope with
noisy video data (smallest µC on P4). PF is more robust to
deal with noise (smaller dC than the remaining trackers). On
P5, Boost shows the best performance (smallest µC) followed
by MS, BeyondSemiBoost, SemiBoost, PF and FragTrack,
respectively. Frame dropping may result in abrupt movements
of target: standard trackers are more robust to increasing levels
of frame dropping than boosting-based trackers. PF is the most
robust tracker (smallest dC on P5) and BeyondSemiBoost
is the least robust. Boost has the best performance under
changing illumination (smallest µC on P6), because of its
ability to adapt to appearance changes [17]. PF is the most
robust with changing illumination (smallest dC on P6). The dC
of MS is the closest to that of PF. An interesting observation
regarding the performance of boosting-based trackers on P6 is
that both µC and dC increase from Boost to SemiBoost and
from SemiBoost to BeyondSemiBoost, which suggests that
the evolution of the boosting-based trackers has resulted in
a decreased ability to cope with changing illumination. The
results also highlight the sensitivity of FragTrack to deal with
changing illumination (the highest µC and the highest dC on
P6). MS has the best performance on P7 both in terms of µC
and the robustness (dC) to cope with the compressed video
data. In terms of µC , Boost shows the closest performance
to MS followed by PF, SemiBoost, BeyondSemiBoost and
FragTrack, respectively; and in terms of dC , PF has the
closest performance to MS followed by Boost, FragTrack,
BeyondSemiBoost and SemiBoost, respectively. Finally, on
P8, MS again outperforms other trackers in terms of µC
and the robustness (dC) to deal with resolution changes. The
performance of Boost is closer to that of MS in terms of µC
as compared to remaining trackers. Moreover, the performance
of PF is closer to that of MS in terms of dC than the other
trackers. Based on the performance analysis on P7 and P8,
the performance of MS is the least affected by compression
or reduction in the resolution.

B. Target-wise comparison
Figure 4 shows the mean CoTPS of trackers (µC) on

each target (H1, H2, ...,H6) and their robustness in terms of
dispersion of their CoTPS (dC) computed in all trials.

(a)

(b)

Fig. 4. Performance comparison of trackers on each target. (a) Mean
CoTPS (µC ) of trackers on each target (H1, H2, ..., H6) with all trials.
(b) CoTPS of trackers on each target computed with all trials; Boost (red),
SemiBoost (green), BeyondSemiBoost (blue), MS (black), FragTrack (cyan)
and PF (magenta). The dispersion value (dC ) for a tracker is computed as
difference between its maximum and minimum CoTPS values on a target.

The performance of SemiBoost is the best on H1 in terms of
µC , followed by BeyondSemiBoost, MS, Boost, PF and Frag-
Track (Fig. 4(a)). In terms of dC , the results show a smaller
variation in performance of the standard trackers compared
to the boosting-based trackers (Fig. 4(b)). There is a pose
change of the target (H1) around frame 107 of the sequence
(Fig. 5(a)), where the boosting-based trackers lose the target
(Boost only tracks a very small part of target in this frame). H2
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(a) H1 (b) H2 (c) H3 (d) H4 (e) H5 (f) H6

Fig. 5. Sample tracking results generated by the trackers using the trials of the proposed evaluation protocol. Boost: red; SemiBoost: green; BeyondSemiBoost:
blue; MS: black; FragTrack: cyan; PF: magenta. For the complete set of results, please see http://www.eecs.qmul.ac.uk/~andrea/pft2.

(a) (b)

Fig. 6. (a) Performance comparison of trackers on each target class (head,
vehicle, person) based on mean CoTPS. (b) Cumulative performance of
trackers: the mean CoTPS of trackers computed on all trials with all targets
are shown with a ‘×’ in the corresponding boxplots. The dispersion value
(dC ) for a tracker is computed as difference between maximum and minimum
CoTPS values in its boxplot.

presents challenges such as partial occlusions, pose changes
and scale changes. PF has the best performance in terms of
µC . The µC of Boost is the closest to PF. Moreover, MS and
PF have a smaller variation (dC) in their performance on H2

compared to the remaining trackers. There is a significant pose
change of target (360◦ turning) around frame 145 (Fig. 5(b)),
where only MS, PF and Boost have tracked. On H3, MS
outperforms the other trackers as shown by its smallest µC .
This is because the appearance of target H3 is very bright and
well-distinguished from the background, and the use of color
distribution enables MS to track well on the various generated
test sequences containing H3. SemiBoost has the smallest
variation in performance on H3 (smallest dC). H3 undergoes
gradual change in its scale and pose across the sequence.
MS deals with these challenges and tracks consistently well,
followed by PF (Fig. 5(c)). H4 is challenging due to the
presence of background clutter, similar objects (vehicles) and
scale changes, and all trackers have obtained high µC on it.
MS has the best performance on H4 in terms of µC followed
by PF, Boost, FragTrack, BeyondSemiBoost and SemiBoost,
respectively. In terms of variation in performance, although
dC for SemiBoost is smaller than for the other trackers, this
is less important as its CoTPS is mostly very high. Among
the remaining trackers, dC of standard trackers is smaller than
Boost and BeyondSemiBoost. The appearance of H4 is very
similar to that of the road making it challenging to track. All
trackers have struggled to track this target with MS showing
the best tracking followed by PF (Fig. 5(d)). Boost and MS
have similar performance on H5 in terms of µC (µC of PF and
SemiBoost are also comparable to them). SemiBoost shows a
smaller variation (dC) in its performance on H5 as compared
to other trackers. H5 faces a severe occlusion around frame

51 where only PF can track the target after the occlusion
(Fig. 5(e)). H6 has challenges such as the presence of targets
of the same class (person), partial occlusions and small pose
changes. FragTrack outperforms the other trackers in terms
of µC as it can deal well with pose changes and partial
occlusions [23]. The sequences containing H2 and H5 also
involve pose changes and partial occlusions but FragTrack
has not performed as well on them (Fig. 4(a)). H2 involves
significant pose changes and H5 involves severe occlusions,
suggesting that FragTrack can cope better with small pose
changes and partial occlusions. Figure 5(f) shows frame 359
involving partial occlusion where FragTrack performs well (PF
also tracks a small part of the target).

C. Discussion

Figure 6(a) shows the performance of trackers for each
target class (head, vehicle, person). Each tracker has its best
performance on head, followed by person and vehicle. The
overall best performance on head and person tracking is by
Boost. The performance of PF is closer to Boost on head
tracking. The overall best performance on vehicle tracking
is by MS. There is an inconsistency in the performance of
FragTrack on person tracking: while it has achieved the best
performance on H6, its performance reduces significantly on
H5 (Fig. 4(a)), as discussed earlier.

Figure 6(b) shows the cumulative performance of trackers
on all trials and all targets. MS has the best perfomance in
terms of µC followed by Boost, PF, SemiBoost, Beyond-
SemiBoost and FragTrack, respectively. PF is more robust
than the remaining trackers as shown by its smaller dC .
Finally, overall, the standard trackers are more robust when
dealing with various test scenarios than the boosting-based
trackers (smaller dC of the former set of trackers in Fig. 6(b)).
MS handles better initialization errors and outperforms other
trackers with compressed videos and resolution reductions.
Boost copes well with noise, with frame dropping and with
changing illumination. Among standard trackers, MS and PF
can handle small as well as large pose changes; whereas
FragTrack can only deal with small pose changes. Among
boosting-based trackers, Boost outperforms SemiBoost and
BeyondSemiBoost in handling pose changes. PF can handle
partial and total occlusions better than all the other trackers.

To conclude, we tested the statistical significance of
CoTPS using the Welch ANOVA test [27], a modified
version of the one-way ANalysis Of VAriance (ANOVA) test
[28], commonly employed to test statistical significance of
multiple groups of data (in our case, there are six groups each
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containing a set of CoTPS of a tracker) whose variances
are unequal [29]. Statistical significance was achieved on each
trial, on each target and on each target class at the standard
significance level α = 0.05.

V. CONCLUSION

We introduced a new overlap-based criterion for the per-
formance evaluation of video trackers on extended targets.
The proposed criterion quantifies performance by combining
tracking accuracy and tracking failure scores. We also pre-
sented a new evaluation protocol that quantifies the robustness
of trackers under various real-world conditions, which are
encapsulated in a series of trials. An extensive experimental
analysis and validation is presented in the form of a statisti-
cally significant performance comparison of six state-of-the-
art trackers. The implementation of the protocol is available
online to provide the research community with a platform to
present and compare the performance of their trackers.

Our future work involves extending the proposed evalua-
tion criterion to multi-target tracking performance evaluation.
Moreover, as the proposed trials are generic and not designed
specifically for a ground-truth-based evaluation, we aim to use
them in combination with standalone evaluation criteria.
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