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Abstract

We present a deep trajectory feature representation ap-

proach to aid trajectory clustering and motion pattern ex-

traction in videos. The proposed feature representation in-

cludes the use of a neural network-based approach that uses

the output of the smallest hidden layer of a trained auto-

encoder to encapsulate trajectory information. The trajec-

tory features are then fed into a mean-shift clustering frame-

work with an adaptive bandwidth parameter computation to

yield dominant trajectory clusters. The corresponding mo-

tion patterns are extracted based on a distance minimiza-

tion from the clusters’ centroids. We show the effectiveness

of the proposed approach on challenging public datasets in-

volving traffic as well non-traffic scenarios.

1. Introduction

A trajectory is defined as an evolution of target states

over time estimated by a video tracker on the image plane.

The use of trajectory information could aid in several tasks

[10, 16, 4, 22, 17, 13] including that of extracting motion

patterns of moving targets in a scene [7, 12]. Indeed, sev-

eral approaches exist for representing trajectory information

in the form of features. Some approaches encode trajec-

tory information in the spatio-temporal domain. A sim-

ple spatio-temporal feature involves the use of start and end

points [12] that could be useful to distinguish between short

and long trajectories. The directional distance computed

using start and end points, the mean of trajectory points,

the average target velocity, the indices corresponding to the

three peaks of the directional histogram along a trajectory,

the two dominant eigen vectors, and the quadratic polyno-

mial coefficients have all been used as trajectory features as

well [1]. A combination of directional information and the

polynomial coefficients is also employed to encode trajec-

tory information [25]. Compared to the feature extraction

in spatio-temporal domain, the feature extraction in the fre-

quency domain has been shown to be more effective for tra-

jectory clustering and motion pattern extraction [7, 12]. For

example, the first few Discrete Fourier Transform (DFT) co-

efficients are used to encode trajectory information in [7].

Trajectory information is also represented in the form of a

non-parametric distribution of the Discrete Wavelet Trans-

form (DWT) trajectory coefficients [12]. More recently, the

focus has shifted towards the use of a different class of fea-

tures that employ deep learning approaches for representing

optical-flow-based dense trajectories [19, 14] or estimated

target trajectories [6, 17]; however, these approaches have

not been aimed at trajectory clustering and motion pattern

extraction. Therefore, the needs remains to investigate and

study effective deep feature representations in the context

of trajectory clustering and pattern extraction.

Trajectory features are often fed into clustering stage for

extracting motion patterns [1, 7, 12]. A hierarchical clus-

tering approach was proposed for separately clustering tra-

jectories of persons and vehicles in order to identify motion

patterns using a point-based trajectory representation [8]. A

framework was presented for trajectory clustering and pat-

tern extraction that involved fusion of the results of multiple

spatio-termporal features [1]. A Dynamic Dual Hierarchi-

cal Dirichlet Processes based approach for motion pattern

learning was introduced that used target positional and di-

rectional information as trajectory features [20]. A Kernal

Density Estimation-based model was proposed to extract

motion patterns using a point-based trajectory representa-

tion by analyzing long-term tracking information [16]. The

Random Field Topic model was introduced for clustering

tracklets (short-term trajectories) to then learn motion pat-

terns using a point-based feature representation [26]. An-

other method [24] also used tracklets in order to learn short-

range motion patterns based on a computed motion map. A

trajectory clustering and motion pattern learning framework

was proposed that used DFT coefficients to represent tra-

jectory information using Dirichlet Process Mixture Model

(DPMM) [7]. An approach to extract trajectory patterns was

presented in [12] that adopted a DWT-coefficient-based tra-

jectory feature representation using the adaptive mean-shift

clustering framework of [1]. Recently, an incremental tra-
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Figure 1. Proposed trajectory analysis framework invloving video

tracking to estimate trajectories followed by a deep trajectory fea-

ture representation and clustering for motion pattern extraction. V :

video sequence; X : set of trajectories; Xj : trajectory j; fj : feature

vector for Xj ; C: set of clusters; M: set of motion patterns.

jectory clustering approach was introduced for activity pat-

tern extraction in a non-parametric Bayesian framework [2].

There exists methods that do not rely on the use of trajecto-

ries but are based on the use of local motion information for

motion pattern extraction [23, 21, 15, 9]; they are however

more appropriate for short-term motion patterns [26, 9].

In this paper, we propose the use of an auto-encoder

based deep trajectory feature representation for perform-

ing effective trajectory clustering to enable extraction of the

key motion patterns in videos. We demonstrate the useful-

ness of the proposed method by quantitatively evaluating

and comparing its performance with existing approaches on

four challenging publicly available datasets.

This paper is organized as follows. Section 2 provides

a formal definition of the problem, and Section 3 describes

the proposed method. This is followed by an experimental

validation in Section 4, and conclusions in Section 5.

2. Problem Definition

Let X be a set of trajectories estimated by a tracker

in a video sequence, V : X = {Xj}
J
j=1

, where J is the

number of estimated trajectories. Xj is the estimated tra-

jectory for target j: Xj = (Xk,j)
k
j

end

k=k
j
start

, where k
j
start

and k
j
end are the first and final frame numbers of Xj , re-

spectively. Xk,j is the estimated state of target j at frame

k : k = 1, . . . ,K with K as the total number of frames in

V . Xk,j = (xk,j , yk,j), where (xk,j , yk,j) denotes at frame

k the position of target j on the image plane. The analysis

of trajectories (X ) aids in identifying the motion patterns

of moving objects (people, vehicles) in a scene. This could

involve applying trajectory clustering on X in the feature

space Ψf to produce a set of clusters: C = {Cn}
N
n=1

. A

cluster Cn is then associated to a motion pattern, Mn, that

represents a spatio-temporal trend of moving objects in a

scene.

3. Proposed Trajectory Analysis Framework

This section describes the proposed framework for tra-

jectory clustering and motion pattern extraction that is

based on a deep trajectory feature representation (Fig. 1).

We first describe the deep feature representation for trajec-

VXj

L1

L2

L3

Figure 2. Proposed feature representation uses a neural network-

based approach that employs the output of the smallest hidden

layer (L2) of a trained auto-encoder to represent trajectory infor-

mation. VXj
: vectorization of the data of the jth trajectory (Xj);

L1: first hidden layer; L3: output layer.

tories in Sec. 3.1 that is followed by the trajectory clustering

in Sec. 3.2.

3.1. Deep Trajectory Feature Representation

In order to generate the feature vector fj for a trajectory

Xj , an auto-encoder (also known as autoassociator or dia-

bolo network) [3] is first trained to reproduce the set of tra-

jectories X . Once a network has been trained, the output of

its smallest layer is used as the feature vector fj. A separate

network has to be trained for each dataset due to the varying

length of the input vectors described above. A network con-

sisting only of fully-connected layers can not handle input

vectors of varying sizes without introducing further meth-

ods of normalization than described above; because of this,

and the difference in scenes of different datasets, it was

opted to use separate networks.

3.1.1 Training the Auto-Encoder

An auto-encoder is an arrangement of a neural network

where the output, once trained, is an estimation of the in-

put vector that is provided (Fig. 2). Outputs of any of the

layers in a trained network can be used as a representation

of the input, due to the ability of the rest of the network

to reproduce the input vector. In this case, the input is the

vectorization of the data of Xj and is denoted as VXj
:

VXj
= [xk,j , yk,j ]

k
j

end

k=k
j
start

. (1)

A neural network is a combination of small units called neu-

rons that are built up into multiple layers. The type of neu-

ron used in this paper is based on the McCulloch-Pitts neu-

ron [11]; this multiplies a single-dimensional input vector



Table 1. The hidden layer sizes of auto-encoder for different

datasets.
Dataset Input L1 Size L2 Size

Traffic Junction 3212 321 160

Parking Lot 5244 524 262

Students003 5746 574 287

Train Station 3024 302 151

with a weight vector summed with a bias node, and outputs

a single value:

yl,n =

Il
∑

i

(wi,nxl,i) + bn, (2)

where yl,n donates the output pre-activation-function y of

the neuron n in layer l. Il is the length of the input vector

Xl for a particular layer, wi and xl,i is a value in the weight

vector and input vector, respectively, and b is the bias value.

The weight vector is initialized to random values. A sig-

moidal function is used for the activation function:

Yl,n =
1

1 + e−yl,n
, (3)

where Y is the output of the neuron. The neurons are then

placed alongside each other as a layer. The output of a layer

l can be described by the following equation:

Ll = [Yl,1, ..., Yl,Il ], (4)

where the layer Ll is a vector containing all of the outputs

of the neurons in the layer. The next layer is then provided

with the output of the previous as it’s input vector (known

as a fully-connected layer), excluding the first layer (l = 1)

for which the input vector is the vectorized trajectory VXj

rather than a previous layer:

Xl =

{

VXj
, if l = 1;

Ll−1, if l > 1.
(5)

The architecture of this type of network contains two

stages: an encoding and decoding stage. For encoding, the

number of neurons in each layer decreases so that the di-

mensionality of the original input vector is effectively re-

duced when passed through the network. The decoding

stage is the opposite: a set of layers incrementing in size

up to the original length of the input vector. Both of these

stages consist of one or more layers. As mentioned above,

this method uses pre-defined scales based on the length of

the original feature vector to determine the number of neu-

rons in each layer in the encoding stage. Two layers are

used: the first is 10% the length of the vector, the second

5% of the vector. Only one layer is used in the decoding

stage of the same size as the original vector. These scales

are static across all of the datasets used in this study. The

values of layer sizes are listed in Table 1.

3.1.2 Feature Extraction

All the information necessary to reproduce the input vec-

tor is provided in the output values of any layer in a trained

auto-encoder network; the smallest layer at the end of the

encoding stage provides the most reduced dimensionality,

in this case the last hidden layer (a layer that is not the final

layer in the network). These can be used as an effective rep-

resentation of the input vectors passed through the network,

due to their property of being able to reproduce the original

trajectory. In this case, the feature vector used is the output

of layer 2, when trajectory j is used as the input vector into

layer 1:

fj = L2. (6)

3.2. Trajectory Clustering

The extracted features, fj , are fed into a clustering frame-

work producing a set of clusters C. In this regard, we used

the adaptive mean-shift clustering algorithm of [1] that does

not require knowledge of the number of clusters a priori.

For an extracted cluster, Cn, the corresponding motion pat-

tern, Mn, is identified by a trajectory based on a distance

minimization from the cluster’s centroid [12]. The quali-

tative results for the extracted clusters and motion patterns

using the proposed method are shown in Fig. 3 on all of the

datasets used in this study.

4. Experimental Validation

This section presents the experimental validation of the

proposed method describing the datasets in Sec. 4.1, the

evaluation criteria in Sec. 4.2, and the results in Sec. 4.3.

4.1. Datasets

We show the effectiveness of the proposed framework

by evaluating and comparing its performance with exisiting

approaches on four challenging publicly available datasets

(Table 2). The first two are related to traffic monitoring and

called Traffic Junction [12] and Parking Lot [12]. Traffic

Junction offers a busy junction scenario with vehicles mov-

ing in varying directions as well as people walking across

and alongside roads. Parking lot presents a multi-row car

park scenario with vehicles and people targets. Both Traffic

Junction and Parking Lot are recorded from a mobile aerial

platform. For both datasets we use the real trajectories with

induced camera motion already compensated as made avail-

able by the authors [12].

For a greater generalization of the proposed approach,

we also evaluated it on two non-traffic datasets: Stu-

dents003 [18] and Train Station [27]. Students003 offers

a highly crowded scene with people walking around in an

outdoor open area. Train Station also offers an open area
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Figure 3. Color coded qualitative results obtained using the proposed method on four datasets: Traffic Junction, Parking Lot, Students003,

Train Station. (a-d) For each dataset, trajectory clusters are shown on different planes along z-axis. (e-h) For each dataset, the corresponding

extracted motion patterns are overlayed on original frames (e-h).

that is highly crowded with people moving inside a train sta-

tion. Both Students003 and Train Station are recorded from

a top-down(ish) fixed camera. On Students003 and Train

Station we use the available trajectories by respective au-

thors [18, 27]. For Train Station we use only longer trajec-

tories (length>600) [12] because the processing of shorter

trajectories (tracklets) is not within the scope of the pro-

posed method.

Note that, while training the auto-encoder, each dataset is

split into a training set (70%) and a testing set (30%). Only

the training set for each dataset is seen during the training

process. Due to the random initialization of the networks

weight vectors, 30 networks were trained per dataset with

the same training/testing set. The results from the training

process are provided in terms of the average of the l2-norms

between the data in each original trajectory and the respec-

tive activations of the output layer (L3) of the corresponding

best network (Table 3). The network is trained for 40000

epochs using stochastic gradient descent on the training set,

with the learning rate at 0.5 and stepping the learning rate

every 500 epochs by 0.9. The training loss used is the cross-

entropy loss.

Table 2. Summary of the datasets used in the study.
Dataset Frame size Number of frames No. of trajectories Frames per second

Traffic Junction 540× 960 16154 236 30

Parking Lot 1080× 1920 9517 54 30

Students003 576× 720 5405 417 25

Train Station 480× 720 46009 762 23

4.2. Evaluation Criteria

We evaluate trajectory clustering by using an accuracy

measure (A) that provides the assessment by quantifying the

concentration of trajectories having the same ground-truth

cluster label and the highest proportion in each cluster, and

then averaging it over all of the clusters [7]. For all datasets

we use the provided ground truth cluster labeling by [12].

Additionally, we use the precision (P ) and recall (R) mea-

sures to assess the extracted motion patterns. P provides

the assessment by penalizing the correct (true positive) pat-

terns with respect to incorrect (false positive) patterns. R

provides the assessment by penalizing the correct (true pos-

itive) patterns with respect to missed (false negative) pat-

terns. If an extracted pattern belongs to a ground-truth clus-

ter, it is deemed correct. To account for the randomness of

the clustering algorithm [1], on each dataset the mean A, P

and R scores are computed for five runs [12].

Table 3. Average of the l2-norms between the data in each original

trajectory and the respective activations of the output layer (L3) of

the corresponding best network for all datasets.

Dataset Average l2-norm

Traffic Junction 2.7711

Parking Lot 10.4947

Students003 4.2008

Train Station 2.9301



Table 4. Evaluation results of the trajectory clustering and motion pattern extraction on all datasets based on A, P and R for different

approaches: DFTfeat, MULTfeat, DWTfeat, and DEEPfeat (the proposed method).

Method Traffic Junction Parking Lot Students003 Train Station

A P R A P R A P R A P R

DFTfeat [7] 0.67 0.67 0.27 0.64 0.48 0.53 0.41 0.90 0.40 0.32 0.60 0.18

MULTfeat [1] 0.70 0.40 0.33 0.56 0.63 0.33 0.51 0.60 0.28 0.33 0.35 0.18

DWTfeat [12] 0.88 0.52 0.50 0.89 0.65 1 0.90 0.58 0.51 0.82 0.45 0.50

DEEPfeat (proposed) 1 0.80 0.50 0.72 0.38 0.83 0.90 0.64 0.60 0.84 0.47 0.56

4.3. Results

We evaluate and compare the performance of the pro-

posed deep trajectory feature (here referred to as ‘DEEP-

feat’) in the clustering and motion pattern extraction frame-

work with 1) an approach that uses DFT coefficients of

x- and y-coordinates to represent trajectory information [7]

(referred to as ’DFTfeat’), 2) a method that uses multiple

spatio-temporal trajectory features [1] (here referred to as

’MULTfeat’), and 3) an approach that represents trajectory

information using a non-parametric distribution of DWT

coefficients of x- and y-coordinates [12] (here referred to

as ’DWTfeat’). Table 4 lists the evaluation results for DFT-

feat, MULTfeat, DWTfeat and DEEPfeat.

The results demonstrate that DEEPfeat outperforms

other approaches in terms of R on all datasets (except on

Parking Lot where it is second best to DWTfeat), which

shows it has generally missed the lowest number of motion

patterns (Table 4). Likewise, in terms of A, DEEPfeat has

again shown the best performance on all datasets except on

Parking Lot where it is again the second best after DWT-

feat. This means that the extracted clusters using DEEPfeat

are mostly more meanignful and accurate than the remain-

ing methods. Moreover, based on P , DEEPfeat shows a

mixed performance: on Traffic Junction, it has achieved

the best performance; on Students003 and Train Station,

DEEPfeat is the second best after DFTfeat; and on Parking

Lot, DEEPfeat stands the last in terms of the performance.

The reason of the bad performance of DEEPfeat on Parking

Lot is likely due to a comparatively smaller number of avail-

able trajectories, whereas deep learning approaches gener-

ally work better in the presence of a large enough amount

of data [5].

5. Conclusions

This paper presented an approach that involved the use of

of a deep feature representation to perform trajectory clus-

tering for motion pattern extraction in videos. The pro-

posed feature representation is based on an auto-encoder

based neural network that employs the output of the small-

est hidden layer of a trained auto-encoder. We evaluated and

compared the proposed method with existing approaches on

four challenging real public datasets.The results particularly

show the superior performance of the proposed method in

terms of (mostly) the highest clustering accuracy and the

highest recall across all datasets.

Future work could involve investigating other methods

for training neural networks as well as testing system’s per-

formance with deeper (larger number of hidden layers) neu-

ral networks within the proposed framework.
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