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Abstract—Sesame (Sesamum indicum L.) is an important 

commercial and food crop, and its yields is limited by many 

insects, pests, diseases, and weeds. Autonomous aerial 

agrochemicals spray application on sesame fields using a drone 

aims to save crop from these yield limiting factors and in 

addition agrochemicals application quantity and site could be 

controlled, and human health is expected to be protected. For 

accurate and selective spray application, autonomous systems 

would need some parameters to distinguish between crop, weed 

and background. In this research an aerial sesame field dataset 

has been collected with the focus to classify patch areas of 

sesame and weeds present in the field. Dataset was captured 

using Agrocam. We have developed a patch image-based 

classification approach along with a novel SesameWeedNet 

convolutional neural network (CNN) inspired by the layer’s 

configuration of VGG networks and depth-wise convolutions of 

the MobileNet. The small model contains 6 convolutional layers, 

and it runs faster and accurately on small patch images. Our 

approach breaks 1920×1080-pixel images into smaller patch 

images of size 45×45 pixels. After that, these small patch images 

are fed to a relatively small CNN for training, validation, and 

finally for classification. Patch based model ensemble and 

dataset grouping are two major parts in our methodology. Our 

system recommends the dataset grouping according to 

vegetation present in the images to enhance classification results. 

We have achieved accuracy up to 96.7% with our proposed 

method. We have tested our system under sunlight variation, in 

wet and dry soil conditions and at different growth stages. To 

the best of our knowledge, no attempt has been made to classify 

and treat crop and weeds in sesame fields at the post-emergence 

stage previously. In this research we have made the contribution 

of aerial sesame-weed dataset and a complete deep learning-

based approach to classify weeds in sesame fields under variable 

lighting conditions. 

Keywords—crop-weed classification using deep learning, 

sesame weed dataset, patch classification, sesame weed 

classification. 

I. INTRODUCTION 

Sesamum indicum is named as the queen of oil crops due 

its high-quality oil. Another property of sesame is drought 

resistance due to which it is popular in water scarce areas in the 

world. In 2018-19 Pakistan exported 366 million tons of 

sesame worth ~$56 million according to Federal Bureau of 

Statistics [1]. In early crop stage, sesame is very sensitive to 

weeds and therefore weed control is important for yield 

increase. Grasses like baroo and khabbal, and broadleaf weeds 

like tandlla, bakhra, hazardani and cholai compete with sesame 

[2]. Sesame yield is also limited by many kinds of insects, pests 

[3], and diseases. Sesame yield in Pakistan is 418 kg/hectare 

[4] while world average is 512 kg/ha, China has highest 

average sesame yield of 1223 kg/ha [5]. Pakistan yield 

potential of sesame is up to 2000 kg/ha. Better control of weeds 

and pests in sesame will result in increased sesame yield in the 

world especially in developing countries. 

For automatic pest/weed management and spraying 

systems, the first important and most challenging step is correct 

detection and classification of crop and weeds [6]. Crop-weed 

classification is challenging as both classes have similar 

textures, shapes, and colors. Other problems in classification of 

crop and weeds include lighting conditions based texture and 

color variations, different growth stages of crop and weeds, and 

soil conditions [7]. Autonomous agrochemicals spray 

application could help save water, agrochemicals, human 

health, and soil pollution. For autonomous agrochemicals 

spray, weed must be classified separately from the crop. 

Autonomous spraying drone units are being used in fields for 

spraying weeds. Spraying using aerial spraying drone is time 

efficient as compared to spraying with ground-based robots. 

Commercially available drones spray agrochemicals using 

GPS on complete field without distinguishing between weeds, 

crop and background. Crop/weeds must be classified, and their 

location should be given to the autonomous drone to effectively 

and selectively spray in the agricultural field. 

  Two types of learning-based techniques are seen in 

literature to classify between weeds and crops i.e., classical 

machine learning-based and deep learning-based techniques. 

In vision tasks, the performance of deep learning-based 

techniques improve with more data plus these techniques are 

easily adaptable and transferable to different applications [8].  
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As crops and weeds are very much similar, discriminative 

feature selection and extraction is difficult with classical 

machine learning. Strong feature learning capabilities of deep 

learning makes it ideal to be applied in crop-weed classification 

tasks. The performance of classical machine learning methods 

like SVM and k-means clustering etc. become saturated and 

does not improve with increase in the dataset after a limit, while 

on the other hand, deep learning perform well with small 

datasets, and its performance increases with improvement and 

increase in datasets [9]. 

Espejo-Garcia et al. [10] did weed detection using transfer 

learning by fine tuning previously trained models like 

Xception, Inception-Resnet, VGGNets, Mobilenet and 

Densenet. The approach worked well on segmented individual 

plants however the approach is tested on a non-cluttered 

individual plants environment, and it would fail on datasets in 

which crop and weeds would be overlapping. Another problem 

with these state-of-the-art models is, they could not be applied 

on small patch images, due to a greater depth of network and 

heavy down sampling. Le et al. [11] did image classification of 

4 classes i.e. canola, corn, radish and background using dataset 

taken under laboratory conditions and achieved good 

performance however there are few problems in this research. 

The dataset is taken under laboratory conditions under 

controlled environment, this situation changes in field where 

weeds could be overlapping with crops posing difficulty in 

separating crop and weed plants. Andrea et al. [12] also did 

similar plant based classification of weeds in maize using 

LeNET, AlexNet, cNET and sNET at early stage of crop. 

Greenness is segmented and individual green blobs are passed 

to neural network for classification. The approach is applicable 

at early stage of crop when weed plants did not overlap with 

crop however the approach will have difficulty in separating 

individual plants at later stages when weeds will cover the 

ground and overlap with crop. Gao et al. [13] did weed 

detection in sugar beet field using YOLO-v3 and tiny YOLO-

v3. The crop and weed plants in the used dataset were easily 

segment able and without overlap. This approach could fail 

when two crop and weed plants are in close proximity and 

overlapping, in such scenario the model will confuse those two 

plants as one and the classification would not be accurate. 

Some researchers [14-16] have done crop/weed classification 

using semantic segmentation, which classifies every pixel in 

image, however it is difficult and computationally expensive 

instead patch-wise classification would be a good choice for 

patch-wise spray application. Patch-wise classification is 

expected to be efficient than pixel-wise classification. A better 

alternative of existing techniques is possible if we could apply 

a small semantic segmentation model to classify vegetation 

first, and then after that a neural network trained on crop and 

weed patch images is deployed. 

In this paper, we propose a complete deep learning based 

approach that relies on dataset grouping and model 

ensembling, in which vegetation is classified and extracted 

using a small semantic segmentation model and then a small 

patch-image based classification model is used to classify crop 

and weeds patches in sesame fields.  The purpose of semantic 

segmentation model in first stage is to classify and extract 

vegetation only. After vegetation is extracted, small patch 

images of size 45×45 pixel are cropped for classification at the 

places where vegetation is detected. At this stage dataset 

grouping is done in such a way that all patches are divided into 

three groups, according to the vegetation present in them. 

Model ensembling is used after that, in which each dataset 

group is used to train a model. The results of three models 

trained on three different dataset groups is combined to 

generate full results. For the classification of smaller patch 

images, we are also proposing SesameWeedNet, a smaller 

convolutional neural network constructed by us using layer 

style of VGG architecture and depth wise convolutions of 

MobileNet. It has total 13 layers (consisting of 6 convolutional 

layers) that can classify sesame and weeds more accurately and 

faster. 

We have found no attempt of sesame-weed classification in 

the literature although sesame is a very valuable crop and that’s 

why this research has a novelty of addressing crop/weed 

classification in sesame crop in postemergence stage. 
In this research, we have made three main contributions. 

1. An improved patch-wise method to enhance 
sesame / weed classification for autonomous 
spray application using drones 

2. A convolutional neural network capable of 
classifying small patch-images and 

3. A new aerial sesame-weed dataset 

The rest of the paper is divided into four sections i.e. 
dataset, system architecture & implementation, results and 
discussion, and conclusion. 

II. DATASET 

We have captured a new aerial sesame-weed dataset using 

Agrocam NDVI using Phantom 3 standard. Agrocam is 

especially designed to monitor crop health, here we have 

deployed it to capture dataset to classify sesame crop and 

weeds. The fields where we imaged sesame crop are in Ballo 

Shahabal village near Jhang, Punjab, Pakistan under 

geographical coordinates of latitude 31.391394 and longitude 

of 72.373489. The captured sesame fields are shown in Fig. 1. 

Fig. 2. shows experimental setup for dataset capture. 

Two fields of approximately 0.927-hectare area of sesame 

crop are imaged in August 2020 at different growth stages.  

Four campaigns of aerial images dataset collection are done on 

these two fields at approximate crop age of 16 and 28 days. 

Table I lists four drone fly campaigns on 2 sesame fields. 

 
Fig. 1. Two fields of sesame (Yellow highlighted area is used in training 

and Red highlighted area is used in testing, black line separate two fields). 



 
Fig. 2. Experimental Setup (Agrocam attached with Phantom 3 drone). 

Flight time of the campaigns is 10-20 minutes. While 
flying snapshots are taken every 5 seconds automatically and 
video is captured continuously. The images are captured 
automatically however the drone is flown in a manual mode 
using remote control at an average altitude of 15 feet which 
corresponds to ground sampling distance of 0.33 cm/pixel.  

TABLE I. DRONE FLY CAMPAIGNS 

 

Agrocam provide NGB images, the three channels of the 

camera are NIR, G and B. As R (red channel) is not present in 

Agrocam so the green vegetation appear orange in the images 

obtained from Agrocam. 

These four campaigns on two sesame fields D1 and D2 

have various natural conditions like sunlight variation, wet and 

dry soil conditions, crop shadows in different positions and 

different growth stage conditions which makes these datasets 

ideal for deep learning processing. 

We have labelled images manually with Image labeler app 

of MATLAB. The app generates a uint8 grayscale image of 

labels. Background, crop and weed get pixel value 0, 1 and 2 

respectively in the labeled image. This new aerial sesame weed 

dataset is made public [17] freely to support further research on 

sesame crop. 

III. SYSTEM ARCHITECTURE & IMPLEMENTATION 

Flow diagram of our proposed system is shown in Fig. 3. 

Our system takes input NGB (NIR+G+B(3-channel)) images 

from Agrocam NDVI sensor. To extract vegetation and remove 

background we have applied semantic segmentation. UNet 

with vanilla mini neural network backbone is applied to 

classify the input image content into two classes i.e. 

background and vegetation. UNet with vanilla mini backbone 

is a simple semantic segmentation network with encoder size 

of two, which is enough to extract all vegetation present in an 

image. Through experimentation we know that higher encoder 

size at this step will only be an increase in computational 

complexity. Vegetation extraction using UNet with vanilla 

mini backbone is shown in Fig. 4. Various natural conditions 

and weed overlapping with sesame crop plants are also obvious 

in Fig. 4. After this preprocessing which itself is based on deep 

learning, our system crops 45×45-pixel patch images where 

vegetation is detected. Using labeled data sesame and weed 

patch images are separated for training. In labelled data, soil 

background has label value of zero, sesame crop has label value 

of one and weeds has label value of two. With every vegetation 

patch cropped, its corresponding labels are analyzed. Based on 

label values, the sesame and weed patches are separated from 

each other.  

An existing patch-based method is already published in 

[18], using different sugar beet datasets and a deep learning 

model, here in this paper we have proposed a patch-based 

method based on model ensembling and dataset grouping. We 

have applied both existing [18] and our proposed method on 

our acquired sesame dataset.  

Our proposed patch-based approach is an improvement of 

existing [18] patch based approach. We have improved that 

research by a neural network ensembling technique and 

grouping the cropped patches according to the vegetation 

present in them. Neural network ensemble is a learning method 

to solve a problem where multiple neural networks work 

jointly. After vegetation extraction step, dataset grouping is 

shown in Fig. 3. In our proposed approach, after separation of 

patches of both classes, these patches are grouped into three 

categories according to vegetation pixels present in them. The 

patch images are analyzed, vegetation pixels in the patches are 

counted and based on the number of detected vegetation the 

patch images are separated into three groups. Group 1 contains 

patches with 1-25 % vegetation (patches having 20-500 

vegetation pixels in them). Group 2 contains patches with 25-

50 % vegetation (patches having 500-1000 vegetation pixels in 

them). Group 3 contains patches with 50-100 % vegetation 

(patches having 1000-2025 vegetation pixels in them).  

Separate training is done using these three dataset groups 

by ensembling three neural networks with proposed 

SesameWeedNet CNN and validation is done with cross 

validation data. Some cropped patches with different 

percentage of vegetation present in them are shown in Fig. 5. 

For testing we do vegetation detection with semantic 

segmentation and then we crop 45×45-pixel patch images from 

unseen test data where vegetation is detected. We count 

number of vegetation pixels in each 45×45-pixel patch images 

and separate them into respective three groups as done in the 

case of training. The three dataset groups are passed from 

respective trained model for prediction. Patches of group 1 of 

test data are passed through SesameWeedNet trained on 1-25 

% vegetation, patches of group 2 of test data are passed through 

SesameWeedNet trained on 25-50 % vegetation, and patches 

of group 3 of test data are passed through SesameWeedNet 

trained on 50-100 % vegetation and predictions are saved. 

After prediction of these patch images labeled test data is 

consulted for quantitative evaluation. 

        Our proposed SesameWeedNet is inspired by layers 

configuration of VGG and depth wise convolutions of 

MobileNet and it is smarter than both networks. It contains 6 

convolutional and 1 fully connected layer (total 13 layers) and 

is shown in Fig. 6. 

        Cropped crop and weed patches of size 45 × 45 pixels 

used in training are 10,71,542 patches. Validation split is kept 

at 0.2 i.e. 5th part of training data is used in cross validation. 

Deep learning is applied using Keras with Tensorflow-GPU 

backend. Our system specifications are i5 eighth generation, 

NVIDIA GTX 1050 graphics card and 16 GB RAM. A 

learning rate of 0.0001 is applied. 

 

Field 

No. 

Timing 

Around 

Soil 

Condition 

Sunlight 

Condition 
Date Captured 

D1 8:30am Dry Sunny 09 August 2020 

D1 11:30am Dry Cloudy 10 August 2020 

D1 6:00pm Dry Near Sunset 19 August 2020 

D2 2:00pm Wet Sunny + Cloudy 21 August 2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Patch based system flow diagram showing dataset grouping and model ensembling 

Fig. 4. Vegetation extraction and various natural conditions: (a) An image from field D1 with Sunny and Dry soil Conditions; (b) Detected vegetation by 
applying semantic segmentation on (a); (c) An image from field D2 with Cloudy and Wet soil Conditions; (d) Detected vegetation by applying 

semantic segmentation on (c); (e) An image from field D2 with Sunny and Wet soil Conditions; (f) Detected vegetation by applying semantic 

segmentation on (e)

Training Images Test Images 

Crop 45×45-pixel patch images where vegetation is detected for 

testing 

Use Labelled data to separate crop and weed patches 

& 

Drop cropped patches which contain both classes 

Separate Training and Testing Data 

Quantitative Evaluation 

Testing Labelled Images 

Crop 45×45-pixel patch images where vegetation is detected for 

training 

Training Labelled Images 

Testing Flow Training Flow 

Apply UNet with Vanilla mini backbone to remove background 

Extracted Vegetation 

Count number of vegetation pixels in 45×45-pixel patch images and 

separate patches into three groups 

 

50-100 % Patch 

vegetation 

Or 1000-2025 

vegetation pixels 

detected in 

patches 

 

25-50 % Patch 

vegetation 

Or 500-1000 

vegetation pixels 

detected in 

patches 

 

1-25 % Patch 

vegetation 

Or 20-500 

vegetation 

pixels detected 

in patches 

Count number of vegetation pixels in 45×45-pixel patch images and 

separate patches into three groups 

 

1-25 %  

vegetation 

Or 1000-2025 

vegetation pixels 

detected in  

patches 

 

25-50 % 

vegetation 

Or 500-1000 

vegetation pixels 

detected in 

patches 

 

50-100 % 

vegetation 

Or 20-500 

vegetation pixels 

detected in 

patches 

Patch prediction 

with 

SesameWeedNet 

Trained on 

50-100 % 

vegetation 

Patch prediction 

with 

SesameWeedNet 

Trained on 

25-50 % 

vegetation 
Patch prediction 

with 

SesameWeedNet 

Trained on 

1-25 % 

vegetation 

 

SesameWeedNet 

Training on 

50-100 % Patch 

vegetation  

SesameWeedNet 

Training on 

25-50 % Patch 

vegetation  

SesameWeedNet 

Training on 

1-25 % Patch 

vegetation 

Agrocam NGB Sesame Images 

         
(a)                             (b)                            (c)                             (d)                             (e)                           (f) 



Fig. 5. Some cropped patches with different percentage of vegetation 
present in them: (a) Two sesame patch images having 50-100% vegetation 

in them; (b) Two sesame patch images having 25-50% vegetation in them; 
(c) Two sesame patch images having 1-25% vegetation in them; (d) Two 

weed patch images having 50-100% vegetation in them; (e) Two weed 

patch images having 25-50% vegetation in them; (f) Two weed patch 
images having 1-25% vegetation in them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Proposed SesameWeedNet Flow Diagram 

Adam and binary cross-entropy are selected as optimizer and 

loss function respectively. Data augmentation of vertical and 

horizontal flips are applied. Epoch with minimum validation 

loss is used to save the best-trained model. We have used 

accuracy (ACC) and area under precision recall curve (AUC) 

as evaluation metrics. 

IV.  RESULTS AND DISCUSSIONS 

      Table II shows labelled test patches cropped and achieved 

quantitative results when patch images are divided into three 

groups according to the vegetation concentration present in 

them. In experiment no. (1) 97 test images from field number 

D1 are used. This field have dry soil and sunny weather 

conditions. In experiment no. (2) 91 test images from field 

number D2 are used. This field have wet soil and sunny 

weather conditions. In experiment no. (3) 18 test images from 

field number D2 are used, these images have wet soil and 

cloudy weather conditions.  

We have observed in Table II that patches of group 2 and 3 

have higher classification accuracy as compared to group 1. 

This is due to more vegetation presence in group 2 and 3 patch 

images, as a result good features are learned while training, 

which in turn increase classification accuracy. 

In case of test dataset D1, ninety-seven 1920×1080-pixel 

images have 11149 vegetation patches which corresponds to 

115 average vegetation (sesame+weed) patches per 

1920×1080-pixel image. Testing time for 11149 patches is 43.1 

seconds with our system with our 3-bin approach, this implies 

that in one second over 258 patches are tested on average. 

These facts lead to a conclusion that in 1 second approximately 

2.2, 1920×1080-pixel images are processed on average. This 

makes our work suitable for real-time processing. 

Fig. 7. shows qualitative results achieved on an image from test 

dataset. Fig. 7(a) shows automatically cropped patches which 

are input to the system. All those patches where vegetation 

(crop or weed) is detected are cropped. Note that there are few 

locations where weed is visible but are not detected and 

cropped automatically, that weed is almost dead, it has very 

dull color and that’s why it is not detected as vegetation. Fig. 

7(b) shows prediction of patches, red color patches are 

predicted as weeds while green color patches are predicted as 

sesame, Fig. 7(c) shows connected weed patches in a binary 

image (white color patches are predicted as weeds while black 

color patches represent sesame or background, this is 

simplified classification of weed which could be used to 

perform autonomous activities on weeds in the sesame farms. 

Crop and weed have similar features while background 

have more distinct features as compared to crop and weed. This 

fact leads to another problem and that is sometimes crop and 

weed classes are confused into each other while background is 

efficiently classified. The probability output of background 

class is distinct while output probabilities of crop and weeds 

are much closer which leads to confused prediction of crop and 

weed. In our patch-based approach this problem in handled 

more suitably as background class is already detected 

separately and now the competing classes are only crop and 

weed. 

Patches containing background would not pass through the 

system, as we have already detected vegetation in first step so 

only those patches go through system which contain some kind 

of vegetation (crop or weed). This way our approach converts 

a 3-class (background + crop + weed) problem to a 2-class 

(crop + weed) problem. This practice in our approach leads to 

less testing time as no time will be wasted to classify 

background patches. 

The quantitative comparison between our proposed and an 

existing [18] patch-based method is shown in Table III, more 

accuracy and less testing time is obvious using dataset 

grouping and parallel model ensembling. 

There is a limitation of our work. The network is trained 

and tested on 0.33cm/pixel dataset GSD at the height of 15 feet. 

If any new test dataset will be tested with much different lower 

or higher GSD, then classification could become less accurate. 

In this case, new training data with similar GSD can be used to 

finetune the network and improve results.  

V.  CONCLUSION 

 We have proposed a new methodology for weed 

detection in sesame crop; a complete deep learning-based 

approach that is more realistic for real-time intelligent aerial 

spraying systems.  
Our method uses semantic segmentation as a first step to 
extract vegetation, this way our method gets rid of problems 
introduced by variable lighting conditions and different soil 
colors. After that, to classify crop and weed, our method 
makes use of model ensembling and dataset grouping. This 
approach has shown more robustness as compared to previous 
patch-based deep learning application.  

Input 

Patch Images 

Convolution: 

64×3×3 

Max Pool 

4×4 

Convolution: 

256×3×3 

Max Pool 

4×4 

FC: 512 

SoftMax: 2 

Convolution: 

64×3×3 

Depth wise 

Convolution: 
 

Convolution: 

1024×3×3 

Depth wise 

Convolution: 
 

Flatten 

Max Pool 

2×2 

             
             (a)                            (b)                     (c) 

             
             (d)                            (e)                            (f) 



 
TABLE II  QUANTITATIVE RESULTS OF 3 BINS OF DIFFERENT FIELDS WITH DIFFERENT FIELD CONDITIONS (N IS TOTAL NUMBER OF PATCHES IN A 

DATASET GROUP) 

 

TABLE III  COMPARISON OF OUR MODEL EMSEMBLING PATCH BASED TECHNIQUE WITH AN EXISTING PATCH BASED METHOD, RESULTS OF TESTING 

ON COMPLETE DATA (CWA STANDS FOR CLASS WISE ACCURACY) 
 

 

                   
            (a)                                                 (b)         (c)  

    

Fig. 7. Qualitative results of Our Agrocam Sesame dataset: (a) Cropped patch images input to the system ( Blue color boxes are patches which are input to 

the system); (b) Predicted patches output of system ( Red color patches are predicted as weeds while Green color patches are predicted as sesame); (c) 

Connected weed patches in a binary image ( white color patches are predicted as weeds while black color patches represent sesame or background, this is 

simplified classification of weed which could be passed to drone for spraying weed areas). 

 

For classification, we developed a new SesameWeedNet 

convolutional neural network (CNN), which is inspired by 

VGG and MobileNet models. For experiments, we acquired a 

new sesame crop dataset with 3-channel multispectral sensor 

with a ground sampling distance of 0.33 cm/pixel and a height 

of 15 feet. A contribution of sharing of this dataset with 

researchers is also done. 

We tested our system under various natural conditions like 

sunlight variation, wet and dry soil conditions, crop shadows in 

different positions and at different growth stages. 

Our system recommends the dataset grouping according to 

vegetation present in the images to enhance classification 

results. We observed that if we group the images according to 

percentage vegetation present in them then the performance of 

neural network is increased. Our approach detects vegetation 

and classification happens between two classes, i.e. crop and 

weed, which, in turn, improves crop and weed classification 

accuracy, as the background patches do not pass through 

system so testing time for an image is also reduced. 

The potential application and extension of this work is 

autonomous agrochemicals spray application on sesame crop 

using drone to treat weeds, pests, insects, and diseases. The 

research presented in this paper is a part of a big ongoing 

project in which autonomous drone is aimed to target weed 

patches. In future we aim to implement our method on 

NVIDIA Jetson Nano board, optimize proposed

Experiments Dataset Group 1 Dataset Group 2 Dataset Group 3 

Experiment no. (1) 

Dry soil + Sunny 

conditions 
Field number D1 

No. of 1080P Test 

Images = 97 

N = 7391 Sesame Weed 

Sesame 2013 154 

Weed 177 5047 

ACC = 95.5%                 AUC = 0.980 

Test Time = 26.3 seconds 
 

N = 2531 Sesame Weed 

Sesame 952 26 

Weed 31 1522 

ACC = 97.7%                 AUC = 0.987 

Test Time = 11.2 seconds 
 

N = 1227 Sesame Weed 

Sesame 844 8 

Weed 30 345 

ACC = 96.9%                AUC = 0.961 

Test Time = 5.6 seconds 
 

Experiment no. (2) 

Wet soil + Sunny 

conditions 
Field number D2 

No. of 1080P Test 

Images = 91 

N = 5763 Sesame Weed 

Sesame 2152 339 

Weed 86 3186 

ACC = 92.6%                AUC = 0.946 

Test Time = 24.4 seconds 
 

N = 2908 Sesame Weed 

Sesame 1533 65 

Weed 25 1285 

ACC = 96.9%                 AUC = 0.971 

Test Time = 13.4 seconds 
 

N = 1638 Sesame Weed 

Sesame 1350 57 

Weed 24 207 

ACC = 95.1%                AUC = 0.847 

Test Time = 7.4 seconds 
 

Experiment no. (3) 
Wet soil +Cloudy 

conditions 

Field number D2 

No. of 1080P Test 

Images = 18 

N = 2049 Sesame Weed 

Sesame 755 101 

Weed 121 1072 

ACC = 89.1%                 AUC =0.936 

Test Time = 9.6 seconds 
 

N = 957 Sesame Weed 

Sesame 529 1 

Weed 31 396 

ACC = 96.6%                  AUC =0.978 

Test Time = 4.9 seconds 
 

N = 608 Sesame Weed 

Sesame 507 1 

Weed 11 89 

ACC = 98.0%                 AUC =0.948 

Test Time = 2.7 seconds 
 

Method and Neural Network 
Field number D1 

No. of 1080P Test Images = 97 

Field number D2 

No. of 1080P Test Images = 91 

Patch-based method discussed in 

[18] 
without Creating Bins 

 

Class sesame weed Mean 

CWA 90.1% 97.3% 93.7% 

Testing time = 53.8 seconds 

Class sesame weed Mean 

CWA 89.4% 97.4% 93.4% 

Testing time = 49.2 seconds 

Our patch-based method  
with creating 3 bins and model 

ensembling as in Table II 

Class sesame weed Mean 

CWA Bin 1 92.8% 98.2% 95.5% 

CWA Bin 2 97.3% 98.1% 97.7% 

CWA Bin 3 99.1% 94.7% 96.9% 

3-Bins 

Average 
96.4% 97.0% 96.7% 

Testing time = 43.1 seconds 

Class sesame weed Mean 

CWA Bin 1 86.4% 98.8% 92.6% 

CWA Bin 2 95.9% 97.9% 96.9% 

CWA Bin 3 95.9% 94.3% 95.1% 

3-Bins 

Average 
92.7% 97.0% 94.8% 

Testing time = 45.2 seconds 



methodology, and design a special nozzle for agricultural 

sprayer drone which could target individual patch areas on 

ground. Two other important future perspectives are drone 

flight planning and spray nozzle control system. 
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